Genotype-Phenotype Taxonomy of Hypertrophic Cardiomyopathy

Author:

Curran Lara12ORCID,de Marvao Antonio345ORCID,Inglese Paolo3ORCID,McGurk Kathryn A.13ORCID,Schiratti Pierre-Raphaël3,Clement Adam3ORCID,Zheng Sean L.13,Li Surui63,Pua Chee Jian7ORCID,Shah Mit3,Jafari MinaORCID,Theotokis Pantazis13ORCID,Buchan Rachel J.123,Jurgens Sean J.89ORCID,Raphael Claire E.1210ORCID,Baksi Arun John12,Pantazis Antonis12,Halliday Brian P.12,Pennell Dudley J.12ORCID,Bai Wenjia611ORCID,Chin Calvin W.L.71213,Tadros Rafik1415,Bezzina Connie R.8ORCID,Watkins Hugh16ORCID,Cook Stuart A.47ORCID,Prasad Sanjay K.12ORCID,Ware James S.123,O’Regan Declan P.3

Affiliation:

1. National Heart and Lung Institute (L.C., K.A.M., S.L.Z., P.T., R.J.B., C.E.R., A.J.B., A.P., B.P.H., D.J.P., S.K.P., J.S.W.)

2. Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust (L.C., R.J.B., C.E.R., A.J.B., A.P., B.P.H., D.J.P., S.K.P., J.S.W.).

3. Medical Research Council Laboratory of Medical Sciences, Imperial College London, United Kingdom (A.d.M., P.I., K.A.M., P.-R.S., A.C., S.L.Z., S.L., M.S., M.J., P.T., R.J.B., S.A.C., J.S.W., D.P.O.).

4. Department of Women and Children’s Health (A.d.M.).

5. British Heart Foundation Centre of Research Excellence, School of Cardiovascular & Metabolic Medicine and Sciences, King’s College London, United Kingdom (A.d.M.).

6. Biomedical Image Analysis Group, Department of Computing (S.L., W.B.)

7. National Heart Research Institute Singapore, Singapore, PRC (C.J.P., C.W.L.C., S.A.C.).

8. Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands (S.J.J., C.R.B.).

9. Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.J.J.).

10. Mayo Clinic Rochester, MN (C.E.R.).

11. Department of Brain Sciences, Imperial College London, London, United Kingdom (W.B.).

12. Department of Cardiology, National Heart Center Singapore, Singapore, PRC (C.W.L.C.).

13. Cardiovascular Sciences ACP, Duke NUS Medical School, Singapore (C.W.L.C.).

14. Cardiovascular Genetics Centre, Montreal Heart Institute (R.T.).

15. Faculty of Medicine, Université de Montréal, QC, Canada (R.T.).

16. Radcliffe Department of Medicine, University of Oxford, United Kingdom (H.W.).

Abstract

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is an important cause of sudden cardiac death associated with heterogeneous phenotypes, but there is no systematic framework for classifying morphology or assessing associated risks. Here, we quantitatively survey genotype-phenotype associations in HCM to derive a data-driven taxonomy of disease expression. METHODS: We enrolled 436 patients with HCM (median age, 60 years; 28.8% women) with clinical, genetic, and imaging data. An independent cohort of 60 patients with HCM from Singapore (median age, 59 years; 11% women) and a reference population from the UK Biobank (n=16 691; mean age, 55 years; 52.5% women) were also recruited. We used machine learning to analyze the 3-dimensional structure of the left ventricle from cardiac magnetic resonance imaging and build a tree-based classification of HCM phenotypes. Genotype and mortality risk distributions were projected on the tree. RESULTS: Carriers of pathogenic or likely pathogenic variants for HCM had lower left ventricular mass, but greater basal septal hypertrophy, with reduced life span (mean follow-up, 9.9 years) compared with genotype negative individuals (hazard ratio, 2.66 [95% CI, 1.42–4.96]; P <0.002). Four main phenotypic branches were identified using unsupervised learning of 3-dimensional shape: (1) nonsarcomeric hypertrophy with coexisting hypertension; (2) diffuse and basal asymmetrical hypertrophy associated with outflow tract obstruction; (3) isolated basal hypertrophy; and (4) milder nonobstructive hypertrophy enriched for familial sarcomeric HCM (odds ratio for pathogenic or likely pathogenic variants, 2.18 [95% CI, 1.93–2.28]; P =0.0001). Polygenic risk for HCM was also associated with different patterns and degrees of disease expression. The model was generalizable to an independent cohort (trustworthiness, M 1 : 0.86–0.88). CONCLUSIONS: We report a data-driven taxonomy of HCM for identifying groups of patients with similar morphology while preserving a continuum of disease severity, genetic risk, and outcomes. This approach will be of value in understanding the causes and consequences of disease diversity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3