Monoallelic Mutations in CC2D1A Suggest a Novel Role in Human Heterotaxy and Ciliary Dysfunction

Author:

Ma Alvin Chun Hang1ORCID,Mak Christopher Chun Yu2ORCID,Yeung Kit San2ORCID,Pei Steven Lim Cho2ORCID,Ying Dingge2,Yu Mullin Ho Chung2,Hasan Kazi Md Mahmudul1ORCID,Chen Xiangke3ORCID,Chow Pak Cheong2,Cheung Yiu Fai2ORCID,Chung Brian Hon Yin2ORCID

Affiliation:

1. Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrate Region, China (A.C.H., K.M.M.H.).

2. Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Kong Kong, Hong Kong Special Administrate Region, China (C.C.Y.M., K.S.Y., S.L.C.P., D.Y., M.H.C.Y., P.C.C., Y.F.C., B.H.Y.C.).

3. Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China (X.C.).

Abstract

Background: Human heterotaxy is a group of congenital disorders characterized by misplacement of one or more organs according to the left-right axis. The genetic causes of human heterotaxy are highly heterogeneous. Methods: We performed exome sequencing in a cohort of 26 probands with heterotaxy followed by gene burden analysis for the enrichment of novel rare damaging mutations. Transcription activator-like effector nuclease was used to generate somatic loss-of-function mutants in a zebrafish model. Ciliary defects were examined by whole-mount immunostaining of acetylated α-tubulin. Results: We identified a significant enrichment of novel rare damaging mutations in the CC2D1A gene. Seven occurrences of CC2D1A mutations were found to affect 4 highly conserved amino acid residues of the protein. Functional analyses in the transcription activator-like effector nuclease–mediated zebrafish knockout models were performed, and heterotaxy phenotypes of the cardiovascular and gastrointestinal systems in both somatic and germline mutants were observed. Defective cilia were demonstrated by whole-mount immunostaining of acetylated α-tubulin. These abnormalities were rescued by wild-type cc2d1a mRNA but not cc2d1a mutant mRNA, strongly suggesting a loss-of-function mechanism. On the other hand, overexpression of cc2d1a orthologous mutations cc2d1a P559L and cc2d1a G808V (orthologous to human CC2D1A P532L and CC2D1A G781V) did not affect embryonic development. Conclusions: Using a zebrafish model, we were able to establish a novel association of CC2D1A with heterotaxy and ciliary dysfunction in the F2 generation via a loss-of-function mechanism. Future mechanistic studies are needed for a better understanding of the role of CC2D1A in left-right patterning and ciliary dysfunction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3