The ultrastructure of photochemically induced thrombi with embolization in a rat model.

Author:

Futrell N1,Riddle J M1

Affiliation:

1. Department of Neurology, Henry Ford Health Sciences Center, Detroit, Mich.

Abstract

Photochemical techniques, currently used in stroke and cancer research, produce endothelial damage and thrombosis. To further characterize these thrombi and to determine whether they embolize, we studied the ultrastructure of photochemically damaged carotid arteries and small vessels distal to the irradiated carotid. The right carotid artery of 9 Wistar rats was irradiated with a laser (632 nm, 200 mW/cm2, 15 minutes) after the injection of the photosensitizing dye Photofrin II, 12.5 mg/kg. There were 6 additional control rats: laser only, 2 rats; dye only, 2; carrier only (5% dextrose), 1; and normal, 1. The carotid artery and cerebral arterioles were studied using scanning and transmission electron microscopy. Endothelial damage was present in all irradiated carotid arteries, and consisted of exposure of the subendothelium and the formation of a nonocclusive thrombus. Although most cerebral arterioles were normal, 32 of these vessels contained peripheral blood elements, with platelet or red blood cell aggregates present in 15. The endothelium adjacent to the aggregates was intact. A few scattered endothelial cells had been lost in the carotid artery of control animals (compatible with normal cell turnover), with a few platelets adhering to the exposed subendothelium. Aggregates of blood cells and platelets in cerebral vessels in the absence of endothelial denudation verifies embolism as the mechanism for cerebral vascular occlusion in this experimental model. The possibility of embolization distal to the site of photochemical irradiation has implications for potential applications of photochemistry for cancer treatment and the ablation of vascular malformations and/or aneurysms.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3