White Matter Changes in the Gerbil Brain Under Chronic Cerebral Hypoperfusion

Author:

Kurumatani Takahiro1,Kudo Takashi1,Ikura Yasumitsu1,Takeda Masatoshi1

Affiliation:

1. From the Department of Neuropsychiatry, Osaka University Medical School (Japan).

Abstract

Background and Purpose —An animal model of chronic cerebral hypoperfusion was developed with coiled clips applied to both carotid arteries of adult Mongolian gerbils for between 1 week and 2 months. In the brain of this animal model, rarefaction of white matter with dilatation of the ventricles was frequently observed. To better understand the mechanism of white matter alteration under cerebral hypoperfusion, the chronological sequence of molecular changes in the cerebral white matter of the animal model was determined. Methods —Specially designed coiled clips were placed around both carotid arteries of Mongolian gerbils to create stenosis without occlusion. Changes in levels of myelin basic protein (MBP) as a marker of myelin, neurofilament H (NFH) as a marker of axonal proteins, and glial fibrillary acidic protein (GFAP) in astroglia after 2 months of cerebral hypoperfusion were analyzed with Western blotting and enzyme-linked immunosorbent assay. Results —Western blotting of the white matter after 2 months of hypoperfusion showed that the levels of MBP and NFH decreased, whereas that of GFAP increased. The time course of MBP and NFH changes determined with enzyme-linked immunosorbent assay revealed that the change of MBP preceded that of NFH. Conclusions —In the present study it was shown that the damage to myelin precedes that to the axon in the white matter in a chronic cerebral hypoperfusion animal model, suggesting that the change in myelin is the primary pathological event in the cerebral white matter under chronic hypoperfusion. The present study may help in understanding the mechanisms of white matter pathology in leukoaraiosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3