A Model of Transient Unilateral Focal Ischemia With Reperfusion in the P7 Neonatal Rat

Author:

Renolleau S.1,Aggoun-Zouaoui D.1,Ben-Ari Y.1,Charriaut-Marlangue C.1

Affiliation:

1. From the Université René Descartes, Paris, France.

Abstract

Background and Purpose —The mechanisms leading to delayed cell death after hypoxic-ischemic injury in the developing brain remain to be elucidated. The aim of this study was to develop a model of transient focal ischemia in the neonatal rat in an attempt to create a reperfusion phase since in the filament model of reversible middle cerebral artery occlusion, size limitations precluded performing this procedure before 14 to 18 days. We then analyze whether apoptosis or necrosis occurs in this model. Methods —Seven-day-old Wistar rat pups (n=96) underwent permanent left middle cerebral artery occlusion in association with 1-hour occlusion of the left common carotid artery. Evolution of the brain infarction was studied from 24 hours to 3 months on cresyl violet–stained coronal sections. Infarct volume was determined with the use of the mitochondrial stain 2,3,5-triphenyltetrazolium chloride. Neuronal death was demonstrated by the silver staining method of Gallyas et al (1980). Chromatin condensation was shown by DNA fragmentation assessed with the use of terminal deoxynucleotidyl transferase–mediated dUTP-biotin nick end-labeling (TUNEL) assay in cryostat sections and electron microscopic analysis. Results —Almost all of the animals who survived had reproducible cortical infarcts. The mean infarct volume was 31±7 mm 3 (mean±SD). The ipsilateral hemisphere showed a well-delineated lesion in the frontoparietal cortex at 3-month recovery. Argyrophilic (dying) neurons were observed a few hours after reperfusion and increased with time. Cells exhibiting DNA fragmentation were shown as early as 6 hours, increased up to and peaked at 24 to 96 hours, then progressively decreased and persisted for several days, suggesting an ongoing process. Electron microscopy analysis demonstrated high condensation and clumping of chromatin beneath nuclear membrane in shrunken neurons. Conclusions —Our study demonstrates the feasibility of performing ischemia-reperfusion in 7-day-old rats that develop progressive neuronal death with features characteristic of apoptosis. The reperfusion phase mimics events that occur during neonatal human hypoxic-ischemic encephalopathy at birth, since perinatal intensive care most often permits recirculation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3