Selective attenuation by perivascular blood of prostanoid-dependent cerebrovascular dilation in piglets.

Author:

Busija D W1,Leffler C W1

Affiliation:

1. Department of Physiology and Pharmacology (D.W.B.), Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, N.C. 27103.

Abstract

Cerebral hemorrhagic insults are common in neonates. However, the consequences of intracranial blood on cerebral hemodynamics are poorly understood. We examined the effects of perivascular blood on cerebrovascular dilator responses in 29 piglets. Fresh, autologous blood (n = 15) or cerebrospinal fluid (n = 14) was placed under the dura mater over the parietal cortex, and the piglets were allowed to recover from anesthesia. One to four days later, a closed cranial window was placed over the parietal cortex and pial arteriolar responses to arterial hypercapnia (PaCO2 greater than 55 mm Hg), hemorrhagic hypotension (mean arterial blood pressure less than 35 mm Hg), or topical application of 10(-6) and 10(-4) M isoproterenol were determined. Pial arterioles in the cerebrospinal fluid group dilated 27 +/- 4% (mean +/- SEM) (n = 11) in response to hypercapnia, 26 +/- 5% (n = 9) in response to hypotension, and 26 +/- 3% in response to 10(-6) M and 40 +/- 4% in response to 10(-4) M isoproterenol (n = 11). In the group in which blood was placed on the parietal cortex, pial arterioles did not dilate significantly in response to hypercapnia (8 +/- 3%, n = 11) or hypotension (2 +/- 5%, n = 13) but dilated normally in response to isoproterenol (25 +/- 5% in response to 10(-6) M and 36 +/- 7% in response to 10(-4) M, n = 13). We conclude that prolonged contact of pial arterioles with extravascular blood selectively attenuates cerebrovascular dilation in piglets.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3