Selective N-Type Calcium Channel Antagonist Omega Conotoxin MVIIA Is Neuroprotective Against Hypoxic Neurodegeneration in Organotypic Hippocampal-Slice Cultures

Author:

Pringle A.K.1,Benham C.D.1,Sim L.1,Kennedy J.1,Iannotti F.1,Sundstrom L.E.1

Affiliation:

1. the Department of Clinical Neurological Sciences, University of Southampton, Southampton General Hospital; and SmithKline Beecham Pharmaceuticals, Harlow, Essex (C.D.B.), UK.

Abstract

Background and Purpose Neuroprotection by antagonists of both L-type and N-type calcium channels occurs in in vivo models of ischemia. The site of action of calcium channel antagonists is unclear, however, and it is likely that a combination of vascular and direct neuronal actions occurs. We have investigated the effects of blocking neuronal calcium channels using an organotypic hippocampal-slice model of ischemia. Methods Organotypic hippocampal-slice cultures prepared from 10-day-old rats were maintained in vitro for 14 days. Cultures were exposed to either 3 hours of oxygen deprivation (hypoxia) or 1 hour of combined oxygen and glucose deprivation (ischemia). Neuronal damage was quantified after 24 hours by propidium iodide fluorescence. Results Three hours of anoxia produced damage exclusively in CA1 pyramidal cells. This damage was prevented by preincubation with omega conotoxin MVIIA, a selective N-type calcium channel blocker, and omega conotoxin MVIIC, which blocks N-type and other presynaptic neuronal calcium channels. The dihydropyridine nifedipine and the mixed calcium channel blocker SB201823 -A were not protective. Furthermore, if addition of conotoxin MVIIA was delayed until after the hypoxic episode, a dose-dependent neuroprotective effect was observed, with an IC 50 of 50 nmol/L. In contrast to hypoxia, none of the compounds was neuroprotective in the model of oxygen-glucose deprivation, although it was determined that extracellular calcium was essential for the generation of ischemic damage. Conclusions These studies present clear evidence that neuroprotection by selective N-type calcium channel antagonists is mediated directly through neuronal calcium channels. In contrast, the neuroprotective effects of dihydropyridines may be mediated through vascular calcium channels or indirectly through actions in other brain regions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3