Cerebral autoregulation dynamics in humans.

Author:

Aaslid R1,Lindegaard K F1,Sorteberg W1,Nornes H1

Affiliation:

1. Institute of Applied Physiology and Medicine, Seattle, Washington.

Abstract

We studied the response of cerebral blood flow to acute step decreases in arterial blood pressure noninvasively and nonpharmacologically in 10 normal volunteers during normocapnia, hypocapnia, and hypercapnia. The step (approximately 20 mm Hg) was induced by rapidly deflating thigh blood pressure cuffs following a 2-minute inflation above systolic blood pressure. Instantaneous arterial blood pressure was measured by a new servo-cuff method, and cerebral blood flow changes were assessed by transcranial Doppler recording of middle cerebral artery blood flow velocity. In hypocapnia, full restoration of blood flow to the pretest level was seen as early as 4.1 seconds after the step decrease in blood pressure, while the response was slower in normocapnia and hypercapnia. The time course of cerebrovascular resistance was calculated from blood pressure and blood flow recordings, and rate of regulation was determined as the normalized change in cerebrovascular resistance per second during 2.5 seconds just after the step decrease in blood pressure. The reference for normalization was the calculated change in cerebrovascular resistance that would have nullified the effects of the step decrease in arterial blood pressure on cerebral blood flow. The rate of regulation was 0.38, 0.20, and 0.11/sec in hypocapnia, normocapnia, and hypercapnia, respectively. There was a highly significant inverse relation between rate of regulation and PaCO2 (p less than 0.001), indicating that the response rate of cerebral autoregulation in awake normal humans is profoundly dependent on vascular tone.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 1387 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3