Procoagulant Activity on Platelets Adhered to Collagen or Plasma Clot

Author:

Ilveskero Sorella1,Siljander Pia1,Lassila Riitta1

Affiliation:

1. From the Wihuri Research Institute and Helsinki University Central Hospital (R.L.), Helsinki, Finland.

Abstract

Abstract —In a new 2-stage assay of platelet procoagulant activity (PCA), we first subjected gel-filtered platelets to adhesion on collagen (as a model of primary hemostasis) or plasma clots (as a model of preformed thrombus) for 30 minutes, and then the adherent platelets were supplemented with pooled, reptilase-treated, diluted plasma. Defibrinated plasma provided coagulation factors for assembly on platelet membranes without uncontrolled binding of thrombin to fibrin(ogen). Platelet adhesion to both surfaces showed modest individual variation, which increased at platelet densities that allowed aggregation. However, adhesion-induced PCA varied individually and surface-independently >3-fold, suggesting a uniform platelet procoagulant mechanism. Permanently adhered platelets showed markedly enhanced PCA when compared with the platelet pool in suspension, even after strong activation. The rate of thrombin generation induced by clot-adherent platelets was markedly faster than on collagen-adherent platelets during the initial phase of coagulation, whereas collagen-induced PCA proceeded slowly, strongly promoted by tissue thromboplastin. Therefore at 10 minutes, after adjustment for adhered platelets, collagen supported soluble thrombin formation as much as 5 times that of the thrombin-retaining clots. Activation of platelets by their firm adhesion was accompanied by formation of microparticles, representing about one third of the total soluble PCA. Collagen-adhered platelets provide soluble thrombin and microparticles, whereas the preformed clot serves to localize and accelerate hemostasis at the injury site, with the contribution of retained thrombin and microparticles.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3