Effect of Fluid Flow on Smooth Muscle Cells in a 3-Dimensional Collagen Gel Model

Author:

Wang Su1,Tarbell John M.1

Affiliation:

1. From the Biomolecular Transport Dynamics Laboratory, Departments of Chemical Engineering and Bioengineering, Pennsylvania State University, University Park, Pa.

Abstract

Abstract —A 3D collagen gel model was developed to simulate interstitial fluid flow and to assess the importance of this flow on the biochemical production rates of vascular smooth muscle cells (SMCs). Rat aortic SMCs were suspended in type I collagen, and the gel was supported by nylon fibers that allowed a 9-cm length of the SMC-gel model to withstand 90 cm H 2 O differential pressure over a 6-hour period without significant compaction. Up to 1 dyne/cm 2 shear stress on the suspended SMCs could be induced by the pressure-driven interstitial flow. The suspended SMCs were globular, had a diameter of ≈10 μm, and were distributed uniformly throughout the gel. The collagen fibers formed a network that was connected randomly with the surface of SMCs and nylon fibers. The diameter of the collagen fibers was ≈100 nm, and the concentration of collagen was 2.5 mg/mL. Using these parameters, fiber matrix theory predicted a Darcy permeability coefficient ( K p ) of 1.22×10 8 cm 2 , which was close to the measured value of K p . The production rates of prostaglandin (PG) I 2 and PGE 2 were used as markers of biochemical responsiveness of SMCs to fluid shear stress. Both PGI 2 and PGE 2 production rates under 1 dyne/cm 2 shear stress were significantly elevated relative to static (no-flow) controls. The production rates, however, were ≈10 times lower than observed when the same cells were plated on collagen-treated glass slides (2D model) and exposed to the same level of shear stress by use of a rotating disk apparatus. The results indicate that interstitial flow can affect SMC biology and that SMCs are more quiescent in 3D cultures than in 2D cultures. The 3D collagen gel model should be useful for future studies of interstitial flow effects on SMC function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3