Expression of Class A Scavenger Receptor Inhibits Apoptosis of Macrophages Triggered by Oxidized Low Density Lipoprotein and Oxysterol

Author:

Liao Hai-Sun1,Kodama Tatsuhiko1,Geng Yong-Jian1

Affiliation:

1. From the Cardiovascular and Pulmonary Research Institute (H.-S.L., Y.-J.G.), Allegheny General Hospital, Pittsburgh, Pa; Molecular Biology and Medicine (T.K.), University of Tokyo, Tokyo, Japan; and the Cardiology Division (Y.-J.G.), Department of Internal Medicine, University of Texas School of Medicine at Houston.

Abstract

Abstract —The class A macrophage scavenger receptor (MSR-A) is a multifunctional trimeric glycoprotein involved in innate immune response as well as the development of lipid-laden foam cells during atherosclerosis. The MSR ligand, oxidized low density lipoprotein (oxLDL), is known to be cytotoxic to macrophages and other cell types. This study examined whether MSR mediates or modulates oxLDL-induced apoptosis. Treatment with oxLDL and its cytotoxic oxysterol, 7-ketocholesterol (7-KC), reduced viability and increased DNA fragmentation in human THP-1 cells, Chinese hamster ovary cells, and mouse peritoneal macrophages. However, cell death and DNA fragmentation were markedly diminished in the phorbol ester–differentiated MSR-expressing THP-1 cells and Chinese hamster ovary cells, with stable expression of MSR-AI after cDNA transfection when exposed to the same concentrations of oxLDL and 7-KC. Moreover, treatment with oxLDL and 7-KC induced much greater death and DNA fragmentation in MSR-A–deficient peritoneal macrophages compared with wild-type macrophages. Thus, MSR-A does not act as a receptor responsible for the apoptotic effect of oxLDL, and instead, expression of this receptor confers resistance of macrophages to the apoptotic stimulation by oxLDL and its cytotoxic lipid component. These results suggest that by preventing apoptosis, MSR-A may contribute to the long-term survival of macrophages and macrophage-derived lipid-laden foam cells in atherosclerotic lesions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3