Early Effects of Arterial Hemodynamic Conditions on Human Saphenous Veins Perfused Ex Vivo

Author:

Mavromatis Kreton1,Fukai Tohru1,Tate Matthew1,Chesler Naomi1,Ku David N.1,Galis Zorina S.1

Affiliation:

1. From the Emory University School of Medicine (K.M., T.F., D.N.K., Z.S.G.) and Georgia Institute of Technology (M.T., N.C., D.N.K., Z.S.G.), Atlanta.

Abstract

Abstract —Exposure to the arterial hemodynamic environment is thought to be a potential trigger for the pathological remodeling of saphenous vein grafts. Using matched pairs of freshly isolated human saphenous vein, we analyzed the early effects of ex vivo hemodynamic conditions mimicking the venous (native) compared with arterial (graft) environment on the key components of vascular remodeling, ie, matrix metalloproteinase (MMP)-9 and MMP-2 and cell proliferation. Interestingly, we found that arterial conditions halved latent MMP-9 (50±11%, P =0.01) and MMP-2 (44±6%, P =0.005) levels relative to matched vein pairs maintained ex vivo under venous perfusion for up to 3 days. Immunostaining supported decreased MMP levels in the innermost area of arterially perfused veins. Either decreased synthesis or increased posttranslational processing may decrease MMP zymogen levels. Biosynthetic radiolabeling showed that arterial perfusion actually increased MMP-9 and MMP-2 production. When we then examined potential pathways for MMP zymogen processing, we found that arterial conditions did not affect the expression of MT-MMP-1, a cell-associated MMP activator, but that they significantly increased the levels of superoxide, another MMP activator, suggesting redox-dependent MMP processing. Additional experiments indicated that increased superoxide under arterial conditions was due to diminished scavenging by decreased extracellular superoxide dismutase. Arterial perfusion also stimulated cell proliferation (by 220% to 750%) in the majority of vein segments investigated. Our observations support the hypothesis that arterial hemodynamic conditions stimulate early vein graft remodeling. Furthermore, physiological arterial flow may work to prevent pathological remodeling, particularly the formation of intimal hyperplasia, through rapid inactivation of secreted MMPs and, possibly, through preferential stimulation of cell proliferation in the outer layers of the vein wall.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3