Affiliation:
1. From the Cardiovascular Research Center, Department of Medicine (Cardiology), Thomas Jefferson University, Philadelphia, Pa.
Abstract
Abstract
—Reactive oxygen species (ROS), produced by cellular constituents of the arterial wall, provide a signaling mechanism involved in vascular remodeling. Because adventitial fibroblasts are actively involved in coronary remodeling, we examined whether the changes in the redox state affect their phenotypic characteristics. To this end, superoxide anion production and NAD(P)H oxidase activity were measured in porcine coronary arteries in vivo, and the effect of ROS generation on adventitial fibroblast proliferation was examined in vitro. Superoxide production (SOD- and Tiron-inhibitable nitro blue tetrazolium [NBT] reduction) increased significantly within 24 hours after balloon-induced injury, with the product of NBT reduction present predominantly in adventitial fibroblasts. These changes were NAD(P)H oxidase–dependent, because diphenyleneiodonium (DPI) abolished superoxide generation (
P
<0.001). Furthermore, the injury-induced superoxide production was associated with augmented NAD(P)H oxidase activity and upregulation of p47
phox
and p67
phox
in adventitial fibroblasts (immunohistochemistry). Serum stimulation of isolated adventitial fibroblasts produced time-dependent increases in ROS production (peak 3 to 6 hours). The inhibition of ROS generation with NAD(P)H oxidase inhibitor (DPI) or the removal of ROS with antioxidants (Tiron, catalase) abrogated proliferation of adventitial fibroblasts. These results indicate that vascular NAD(P)H oxidase plays a central role in the upregulation of oxidative stress after coronary injury, providing pivotal growth signals for coronary fibroblasts.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
129 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献