Nitric Oxide Differentially Regulates Induction of Type II Nitric Oxide Synthase in Rat Vascular Smooth Muscle Cells Versus Macrophages

Author:

Zhang Hanfang1,Snead Connie1,Catravas John D.1

Affiliation:

1. From the Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Ga.

Abstract

Abstract —We studied effects of nitric oxide (NO) released by different NO donors on induction of inducible NO synthase (iNOS) in rat aortic smooth muscle cells (RASMC) and rat macrophage cell line NR8383. iNOS protein expression induced by a CM (interleukin-1β 250 U/mL, interferon-γ 150 U/mL, and tumor necrosis factor-α 150 U/mL) was not affected by the NO donor SNAP (0.2 to 1 mmol/L) in RASMC at 24 hours of incubation but was dose-dependently decreased by SNAP in macrophages (maximal 60% inhibition). A fully functional −3.2-kb rat iNOS promoter was transfected into RASMC and macrophages. The CM-induced promoter activity in transfected macrophages was inhibited by SNAP (maximal 67% inhibition), but this inhibitory effect by SNAP was not observed in transfected RASMC. Electrophoretic mobility-shift assays demonstrated that nuclear factor-κB (NF-κB) binding patterns were different in 2 cell types and that the ratio of p50:p65 subunits was significantly lower in macrophages than in RASMC. Furthermore, NF-κB activity was not affected by SNAP in RASMC but was reduced by SNAP in macrophages. Another putative NO donor, NOR3 (1 mmol/L), completely inhibited iNOS induction by CM in RASMC, but this was accompanied by severe cytotoxicity, which resulted in cell death. Similar concentrations of SNAP did not exhibit cytotoxicity in RASMC, whereas macrophages demonstrated 88% viability compared with cells without SNAP. NO synthase inhibitor N g -monomethyl- l -arginine significantly inhibited CM-induced nitrite production in both cell types and stimulated iNOS protein expression in macrophages but did not affect iNOS expression in RASMC. These data strongly suggest that NO may affect transcriptional regulation of iNOS differently in RASMC versus macrophages, possibly by means of regulation of NF-κB activation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3