Comparative Antiplatelet Efficacy of a Novel, Nonpeptide GPIIb/IIIa Antagonist (XV454) and Abciximab (c7E3) in Flow Models of Thrombosis

Author:

Abulencia James P.1,Tien Niven1,McCarty Owen J. T.1,Plymire Daniel1,Mousa Shaker A.1,Konstantopoulos Konstantinos1

Affiliation:

1. From the Department of Chemical Engineering (J.P.A., N.T., O.J.T.M., D.P., K.K.), Johns Hopkins University, Baltimore, Md, and DuPont Pharmaceuticals Co (S.A.M.), Wilmington, Del.

Abstract

Abstract —Glycoprotein (GP) IIb/IIIa is pivotal in homotypic platelet aggregation and may also be involved in the heterotypic adhesion of leukocytes and tumor cells to platelets. This study was primarily undertaken to compare the antiplatelet efficacy of a novel, nonpeptide GPIIb/IIIa antagonist, XV454, to that of abciximab in 2 flow models of platelet thrombus formation: (1) direct shear-induced platelet aggregation imposed by a cone-and-plate rheometer and (2) platelet adhesion onto von Willebrand factor (vWF)/collagen I followed by aggregation in a perfusion system. XV454 inhibited platelet aggregation in a concentration-dependent manner in both experimental models. Maximal inhibition of aggregation was achieved by XV454 at ≈70% receptor occupancy, which is lower than the ≥85% previously reported for abciximab. At similar levels of receptor blockade (≈45%), XV454 appeared to be relatively more effective than abciximab in suppressing platelet aggregation. Neither XV454 nor abciximab inhibited platelet adhesion to collagen. Pretreatment of surface-adherent platelets with either XV454 or abciximab inhibited the attachment of monocytic THP-1 cells under flow. In contrast, the rapidly reversible GPIIb/IIIa inhibitor orbofiban failed to suppress these heterotypic interactions. These findings demonstrate that XV454 is a potent GPIIb/IIIa antagonist with a long receptor-bound lifetime like abciximab and may be beneficial for the treatment/prevention of thrombotic complications.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3