Factor Xa Activates Endothelial Cells by a Receptor Cascade Between EPR-1 and PAR-2

Author:

Bono Françoise1,Schaeffer Paul1,Hérault Jean-Pascal1,Michaux Corinne1,Nestor Anne-Laure1,Guillemot Jean-Claude1,Herbert Jean-Marc1

Affiliation:

1. From Sanofi-Synthélabo Recherche, Toulouse, France.

Abstract

Abstract —In addition to its pivotal role in hemostasis, factor Xa binds to human umbilical vein endothelial cells through the recognition of a protein called effector cell protease receptor (EPR-1). This interaction is associated with signal transduction, generation of intracellular second messengers, and modulation of cytokine gene expression. Inhibitors of factor Xa catalytic activity block these responses, thus indicating that the factor Xa–dependent event of local proteolysis is absolutely required for cell activation. Because EPR-1 does not contain proteolysis-sensitive sites, we investigated the possibility that signal transduction by factor Xa requires proteolytic activation of a member of the protease-activated receptor (PAR) gene family. Catalytic inactivation of factor Xa by DX9065 suppressed factor Xa–induced increase in cytosolic free Ca 2+ in endothelial cells (IC 50 =0.23 μmol/L) but failed to reduce ligand binding to EPR-1. In desensitization experiments, trypsin or the PAR-2–specific activator peptide, SLIGKV, ablated the Ca 2+ signaling response induced by factor Xa. Conversely, pretreatment of endothelial cells with factor Xa blocked the PAR-2–dependent increase in cytosolic Ca 2+ signaling, whereas PAR-1–dependent responses were unaffected. Direct cleavage of PAR-2 by factor Xa on endothelial cells was demonstrated by cleavage of a synthetic peptide duplicating the PAR-2 cleavage site and by immunofluorescence with an antibody to a peptide containing the 40–amino acid PAR-2 extracellular extension. These data suggest that factor Xa induces endothelial cell activation via a novel cascade of receptor activation involving docking to EPR-1 and local proteolytic cleavage of PAR-2.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3