Hypoxic Preconditioning Induces Neuroprotective Stanniocalcin-1 in Brain via IL-6 Signaling

Author:

Westberg Johan A.1,Serlachius Martina1,Lankila Petri1,Penkowa Milena1,Hidalgo Juan1,Andersson Leif C.1

Affiliation:

1. From Department of Pathology (J.A.W., M.S., P.L., L.C.A.), Haartman Institute, University of Helsinki, Helsinki, Finland; HUSLAB (L.C.A.), Helsinki, Finland; the Department of Medical Anatomy-The Panum Institute (M.P.), University of Copenhagen, Copenhagen, Denmark; Department of Cellular Biology (J.H.), Physiology and Immunology, Institute of Neurosciences, Autonomous University of Barcelona, Barcelona, Spain; Department of Oncology and Pathology (L.C.A.), Karolinska Institutet, Stockholm, Sweden.

Abstract

Background and Purpose— Exposure of animals for a few hours to moderate hypoxia confers relative protection against subsequent ischemic brain damage. This phenomenon, known as hypoxic preconditioning, depends on new RNA and protein synthesis, but its molecular mechanisms are poorly understood. Increased expression of IL-6 is evident, particularly in the lungs of animals subjected to hypoxic preconditioning. Stanniocalcin-1 (STC-1) is a 56-kDa homodimeric glycoprotein originally discovered in bony fish, where it regulates calcium/phosphate homeostasis and protects against toxic hypercalcemia. We originally reported expression of mammalian STC-1 in brain neurons and showed that STC-1 guards neurons against hypercalcemic and hypoxic damage. Methods— We treated neural Paju cells with IL-6 and measured the induction of STC-1 mRNA. In addition, we quantified the effect of hypoxic preconditioning on Stc-1 mRNA levels in brains of wild-type and IL-6 deficient mice. Furthermore, we monitored the Stc-1 response in brains of wild-type and transgenic mice, overexpressing IL-6 in the astroglia, before and after induced brain injury. Results— Hypoxic preconditioning induced an upregulated expression of Stc-1 in brains of wild-type but not of IL-6–deficient mice. Induced brain injury elicited a stronger STC-1 response in brains of transgenic mice, with targeted astroglial IL-6 expression, than in brains of wild-type mice. Moreover, IL-6 induced STC-1 expression via MAPK signaling in neural Paju cells. Conclusion— These findings indicate that IL-6–mediated expression of STC-1 is one molecular mechanism of hypoxic preconditioning-induced tolerance to brain ischemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3