Second Harmonic Imaging of the Human Brain

Author:

Harrer Judith U.1,Klötzsch Christof1

Affiliation:

1. From the Department of Neurology, University Hospital Aachen, Aachen, Germany.

Abstract

Background and Purpose Second harmonic imaging (SHI) is a novel ultrasound technique that allows the evaluation of brain tissue perfusion. The purpose of this study was to assess normal cerebral echo contrast characteristics in 3 regions of interest (ROIs) in the transverse axial and coronal insonation planes through the temporal bone window. Materials and Methods SHI examinations were performed in 25 patients without cerebrovascular disease (aged 50±19 years) in a transverse axial and a coronal diencephalic insonation plane through the temporal bone window. After intravenous administration of 2.5 g (400 mg/mL) of a galactose-based echo contrast agent, 62 time-triggered images with a transmission rate of 1 frame per 2.5 seconds were recorded for offline analysis. Time-intensity curves, including peak intensity (PI) (dB) and positive gradient (PG) (dB/s), were calculated to quantify ultrasound intensity in 3 different ROIs in both planes of the following sections: the thalamus (ROI thal ), the lentiform nucleus (ROI ncl ), and the area supplied by the middle cerebral artery (ROI mca ). Results Characteristic time-intensity curves with high PIs and steep PGs were recorded in each ROI. Statistical analysis of the aforementioned parameters showed no significant difference for comparison of the 3 ROIs in the transverse axial versus the coronal insonation plane. Comparison of different ROIs in the transverse axial insonation plane revealed that PI was significantly higher in ROI thal than in ROI mca (7.8 versus 5.5 dB; P <0.05) and significantly higher in ROI ncl than in ROI thal (9.3 versus 7.8 dB; P <0.05). In contrast, PG was comparable in ROI thal and in ROI mca (0.21 versus 0.25 dB/s; P =0.42). Conclusions SHI is a promising technique for the evaluation of cerebral parenchymal perfusion. Comparison of the transverse axial and coronal insonation planes shows similar time-intensity curves with comparable values for PIs and PGs. Coronal insonation allows the evaluation of perfusion abnormalities near the vertex and skull base, areas that cannot be depicted in the transverse axial plane. Comparison of the different ROIs indicates that the PG is a more robust and reliable parameter than the PI.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3