Two Sodium/Calcium Exchanger Gene Products, NCX1 and NCX3, Play a Major Role in the Development of Permanent Focal Cerebral Ischemia

Author:

Pignataro Giuseppe1,Gala Rosaria1,Cuomo Ornella1,Tortiglione Anna1,Giaccio Lucia1,Castaldo Pasqualina1,Sirabella Rossana1,Matrone Carmela1,Canitano Adriana1,Amoroso Salvatore1,Di Renzo Gianfranco1,Annunziato Lucio1

Affiliation:

1. From the Division of Pharmacology, Department of Neuroscience, University of Naples “Federico II,” Naples, Italy.

Abstract

Background and Purpose— The Na + /Ca 2+ exchanger, by mediating Ca 2+ and Na + fluxes in a bidirectional way across the synaptic plasma membrane, may play a pivotal role in the events leading to anoxic damage. In the brain, there are 3 different genes coding for 3 different proteins: NCX1, NCX2, and NCX3. The aim of this study was to determine whether NCX1, NCX2, and NCX3 might play a differential role in the development of cerebral injury induced by permanent middle cerebral artery occlusion (pMCAO). Methods— By means of Western blotting, NCX1, NCX2, and NCX3 protein expression was evaluated in the ischemic core and in the remaining nonischemic area of the slice at different time intervals starting from ischemia induction. The role of each isoform was also assessed with antisense oligodeoxynucleotides (ODNs) targeted for each isoform. These ODNs were continuously intracerebroventricularly infused with an osmotic minipump (1 μL/h) for 48 hours, 24 hours before pMCAO. Results— The results showed that after pMCAO all 3 NCX proteins were downregulated in ischemic core; NCX3 decreased in periinfarctual area whereas NCX1 and NCX2 were unchanged. The ODNs for NCX1 and NCX3 gene products were capable of inducing an increase in the ischemic lesion and to worsen neurological scores. Conclusions— The results of this study suggest that in the neuroprotective effect exerted by NCX during ischemic injury, the major role is prevalently exerted by NCX1 and NCX3 gene products.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3