CCM2 Expression Parallels That of CCM1

Author:

Seker Askin1,Pricola Katie L.1,Guclu Bulent1,Ozturk Ali K.1,Louvi Angeliki1,Gunel Murat1

Affiliation:

1. From the Yale Neurovascular Surgery Program, Department of Neurosurgery, Yale University School of Medicine, New Haven, Conn.

Abstract

Background and Purpose— Mutations in CCM2 (MGC4607 or malcavernin) cause familial cerebral cavernous malformation (CCM), an autosomal dominant neurovascular disease. Both the function of this molecule and the pathogenesis of the disease remain elusive. Methods— We analyzed the mRNA expression of Ccm1 and Ccm2 in the embryonic and postnatal mouse brain by in situ hybridization. Subsequently, we generated CCM2-specific polyclonal antibodies and tested their specificity using transient transfection experiments in various cell lines. We then investigated CCM2 protein expression in cerebral and extracerebral tissues by Western blot analysis as well as immunohistochemistry and compared these results with CCM1 (KRIT1) protein expression. Results— In situ analysis shows similar temporal and spatial expression patterns for Ccm1 and Ccm2, although Ccm1 expression appears more widespread. Immunohistochemical analysis shows that CCM2 is expressed in various human organs, most noticeably in the arterial vascular endothelium. As is the case with CCM1, CCM2 is not expressed in other vascular wall elements such as smooth muscle cells or the venous circulation. Within cerebral tissue, it is also expressed in pyramidal neurons, astrocytes, and their foot processes. In extracerebral tissues, CCM2 is present in various epithelial cells necessary for blood-organ barrier formation. Conclusions— CCM1 and CCM2 have similar expression patterns during development and postnatally thereafter. Given the fact that the disease phenotypes caused by mutations in either gene are clinically and pathologically indistinguishable, the significant overlap in expression pattern supports the hypothesis that both molecules are involved in the same pathway important for central nervous system vascular development.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3