Glucose but Not Lactate in Combination With Acidosis Aggravates Ischemic Neuronal Death In Vitro

Author:

Cronberg Tobias1,Rytter Anna1,Asztély Fredrik1,Söder Anna1,Wieloch Tadeusz1

Affiliation:

1. From the Department of Clinical Neuroscience, Lund University, Lund, Sweden.

Abstract

Background and Purpose— Hyperglycemia aggravates brain damage in clinical stroke and in experimental in vivo models of cerebral ischemia. Elevated preischemic glucose levels, lactate production, and intracerebral acidosis correlate with increased brain damage. We have developed a murine hippocampal slice culture model of in vitro ischemia (IVI), suitable for studies of the mechanisms of neuronal death. In this model we investigated the individual contribution of glucose, pH, lactate, and combinations thereof as well as ionotropic glutamate receptor activation to the development of hyperglycemic ischemic cell death. Methods— Murine organotypic hippocampal slice cultures were exposed to IVI in a medium with an ionic composition similar to that of the extracellular fluid in the brain during ischemia in vivo. Cell death was assessed by propidium iodide uptake. Ionotropic glutamate receptor blockade was accomplished by d -2-amino-5-phosphonopentanoic acid (D-APV) or 2,3-dihydro-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX). Results— The combination of high glucose levels and acidosis (pH 6.8), but not acidosis per se or the combination of lactate and acidosis during IVI, exacerbated damage. Cell death after hyperglycemic IVI was not diminished by blockade of ionotropic glutamate receptors. Conclusions— Aggravation of brain damage by hyperglycemia in vivo can be reproduced in hippocampal slice cultures in vitro. Our results demonstrate that glucose per se, but not lactate, in combination with acidosis mediates the detrimental hyperglycemic effect through a mechanism independent of ionotropic glutamate receptors.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3