Neuroprotection by Selective Nitric Oxide Synthase Inhibition at 24 Hours After Perinatal Hypoxia-Ischemia

Author:

Peeters-Scholte Cacha1,Koster Johanna1,Veldhuis Wouter1,van den Tweel Evelyn1,Zhu Changlian1,Kops Nicole1,Blomgren Klas1,Bär Dop1,van Buul-Offers Sylvia1,Hagberg Hendrik1,Nicolay Klaas1,van Bel Frank1,Groenendaal Floris1

Affiliation:

1. From the Department of Neonatology, Wilhelmina Children’s Hospital (C.P-S., J.K., E. van den T., F. van B., F.G.); Department of Experimental In Vivo Nuclear Magnetic Resonance, Image Sciences Institute (W.V., K.N.); Departments of Experimental Neurology (D.B.) and Pediatric Endocrinology (N.K., S. van B-O.), University Medical Center Utrecht, Utrecht, Netherlands; and Perinatal Center, Institute of Physiology and Pharmacology, Göteborg University, Göteborg, Sweden (C.Z., K.B., H.H.).

Abstract

Background and Purpose— Perinatal hypoxia-ischemia is a major cause of neonatal morbidity and mortality. Until now no established neuroprotective intervention after perinatal hypoxia-ischemia has been available. The delay in cell death after perinatal hypoxia-ischemia creates possibilities for therapeutic intervention after the initial insult. Excessive nitric oxide and reactive oxygen species generated on hypoxia-ischemia and reperfusion play a key role in the neurotoxic cascade. The present study examines the neuroprotective properties of neuronal and inducible but not endothelial nitric oxide synthase inhibition by 2-iminobiotin in a piglet model of perinatal hypoxia-ischemia. Methods— Twenty-three newborn piglets were subjected to 60 minutes of hypoxia-ischemia, followed by 24 hours of reperfusion and reoxygenation. Five additional piglets served as sham-operated controls. On reperfusion, piglets were randomly treated with either vehicle (n=12) or 2-iminobiotin (n=11). At 24 hours after hypoxia-ischemia, the cerebral energy state, presence of vasogenic edema, amount of apparently normal neuronal cells, caspase-3 activity, amount of terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling (TUNEL)-positive cells, and degree of tyrosine nitration were assessed. Results— A 90% improvement in cerebral energy state, 90% reduction in vasogenic edema, and 60% to 80% reduction in apoptosis-related neuronal cell death were demonstrated in 2-iminobiotin-treated piglets at 24 hours after hypoxia- ischemia. A significant reduction in tyrosine nitration in the cerebral cortex was observed in 2-iminobiotin-treated piglets, indicating decreased formation of reactive nitrogen species. Conclusions— Simultaneous and selective inhibition of neuronal and inducible nitric oxide synthase by 2-iminobiotin is a promising strategy for neuroprotection after perinatal hypoxia-ischemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3