Reflex constriction of significant coronary stenosis as a mechanism contributing to ischemic left ventricular dysfunction during isometric exercise.

Author:

Brown B G,Lee A B,Bolson E L,Dodge H T

Abstract

To study the mechanisms of myocardial ischemia during isometric exercise, handgrip was sustained, for 4.5 min at 25% of maximum by 11 patients with at least one significant coronary stenosis each, during cardiac catheterization. After recovery, the handgrip that was repeated with simultaneous infusion of nitroglycerin (50 micrograms over 4 min) directly into the diseased vessel. The cardiovascular response was assessed by hemodynamic and by computer-assisted measurements of stenosis. During the first handgrip test pulmonary capillary wedge pressure rose 56% (15 to 23 mm Hg; p less than .001), the heart rate-systolic pressure product rose 33% (p less than .01), and the diseased epicardial arteries constricted. Luminal area in the stenotic segment was reduced by 35% (p less than .01), resulting in a 243% increase in estimated stenotic flow resistance (30 to 103 mm Hg/ml/sec; p less than .001). During handgrip with intracoronary nitroglycerin, the pressure-rate product again increased 33%, but relative to resting control, capillary wedge pressure fell 4 mm Hg in association with a 32% increase in luminal area of the stenosis and a 28% reduction in flow resistance (all significantly different from the response to handgrip alone: p less than .001, .01, and .005, respectively). Thus, coronary vasoconstriction, not increased pressure-rate product, is the dominant mechanism for ischemic left ventricular dysfunction during isometric exercise in patients with significant coronary stenoses.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 264 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3