Left ventricular filling dynamics: influence of left ventricular relaxation and left atrial pressure.

Author:

Ishida Y,Meisner J S,Tsujioka K,Gallo J I,Yoran C,Frater R W,Yellin E L

Abstract

Peak rapid filling rate (PRFR) is often used clinically as an index of left ventricular relaxation, i.e., of early diastolic function. This study tests the hypothesis that early filling rate is a function of the atrioventricular pressure difference and hence is influenced by the left atrial pressure as well as by the rate of left ventricular relaxation. As indexes, we chose the left atrial pressure at the atrioventricular pressure crossover (PCO), and the time constant (T) of an assumed exponential decline in left ventricular pressure. We accurately determined the magnitude and timing of filling parameters in conscious dogs by direct measurement of phasic mitral flow (electromagnetically) and high-fidelity chamber pressures. To obtain a diverse hemodynamic data base, loading conditions were changed by infusions of volume and angiotensin II. The latter was administered to produce a change in left ventricular pressure of less than 35% (A-1) or a change in peak left ventricular pressure of greater than 35% (A-2). PRFR increased with volume loading, was unchanged with A-1, and was decreased with A-2; T and PCO increased in all three groups (p less than .005 for all changes). PRFR correlated strongly with the diastolic atrioventricular pressure difference at the time of PRFR (r = .899, p less than .001) and weakly with both T (r = .369, p less than .01) and PCO (r = .601, p less than .001). The correlation improved significantly when T and PCO were both included in the multivariate regression (r = .797, p less than .0001). PRFR is thus determined by both the left atrial pressure and the left ventricular relaxation rate and should be used with caution as an index of left ventricular diastolic function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 606 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3