Delineation of myocardial oxygen utilization with carbon-11-labeled acetate.

Author:

Brown M,Marshall D R,Sobel B E,Bergmann S R

Abstract

Although positron-emission tomography (PET) with labeled fatty acid delineates infarct size and permits qualitative assessment of fatty acid utilization, quantification of oxidative metabolism is limited by complex alterations in the pattern of utilization of fatty acid during ischemia and reperfusion. Because metabolism of acetate by myocardium is less complex than that of glucose or palmitate, we characterized kinetics of utilization of radiolabeled acetate in 37 isolated rabbit hearts perfused with modified Krebs-Henseleit buffer and performed a pilot tomographic study in man. Results of initial experiments with carbon-14-labeled acetate (14C-acetate) indicated that the steady-state extraction fraction of acetate averaged 61.5 +/- 4.0% in control hearts (n = 4), 93.6 +/- 0.9% in hearts rendered ischemic (n = 4), and 54.8 +/- 4.0% in hearts reperfused after 60 min of ischemia (n = 3). Oxidation of 14C-acetate, assessed from the rate of efflux of 14CO2 in the venous effluent, correlated closely with the rate of oxygen consumption under diverse metabolic conditions (r = .97, p less than .001). In addition, no significant differences were observed between rates of efflux of total 14C in all chemical species (reflecting total clearance of tracer from myocardium) and efflux of 14CO2. Clearance of 11C-acetate, measured externally with gamma probes in normal and ischemic myocardium, correlated closely with clearance of 14C-acetate measured directly in the effluent (r = .99, p less than .001) and with overall myocardial oxygen consumption (r = .95, p less than .001). Accumulation and clearance of 11C-acetate from human myocardium with PET demonstrated kinetics comparable to those seen with radiolabeled acetate in vitro. Thus externally detectable clearance of 11C-acetate provides a quantitative index of myocardial oxidative metabolism despite variation in the patterns of intermediary metabolism that confounds interpretation of results with conventionally used tracers such as glucose and fatty acid.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3