Vector mapping of myocardial activation.

Author:

Kadish A H,Spear J F,Levine J H,Hanich R F,Prood C,Moore E N

Abstract

A custom-made probe, consisting of four electrodes arranged so that two orthogonal bipolar electrograms could be recorded from a single site, was used to record epicardial activity during atrial and ventricular pacing in five normal and five anesthetized open-chest mongrel dogs with myocardial infarction. Unfiltered bipolar electrograms recorded with a 2 mm interelectrode distance averaged 36 +/- 15 mV in amplitude and 16 +/- 5 msec in duration in normal areas and 14 +/- 11 mV and 23 +/- 12 msec in infarcted areas (p less than .01 infarct vs normal). The bipolar electrograms were vector summed so that a vector loop could be generated at each site. The direction of epicardial impulse propagation as determined by multipoint isochronal activation mapping was compared with that indicated by maximum x,y deflection of the vector loop. At 203 sites (141 normal and 62 infarcted) there was a median error of only 13 degrees and an excellent correlation by linear regression (r2 = .95). In normal myocardium vector loops were straight (60%), open (21%), or hooked (19%). In infarcted myocardium, notched and irregular loops were occasionally seen. However, a clear maximum x,y deflection was still obtained from 98% of infarcted sites. During ventricular pacing in normal dogs, uniform epicardial conduction was observed for up to 4 cm longitudinal to fiber orientation but only 1 cm transverse to it. At selected sites longitudinal to fiber orientation conduction velocity was 0.618 m/sec, electrogram duration 12 msec, and vector amplitude 76 mV compared with 0.304 m/sec, 18 msec, and 38 mV during conduction transverse to fiber orientation (p less than .05 for all comparisons). Vector mapping of epicardial activation was performed during ventricular tachycardia induced by programmed stimulation in two of five 2-week-old canine myocardial infarcts. Aside from minor irregularities caused by impulse spread around areas of block, vector loops indicated when impulses were spreading away from the area of early epicardial activity and thus directed mapping to the region of earliest activation. We conclude that vector loops generated by summing orthogonal local bipolar electrograms accurately represent the direction of epicardial activation in both normal and infarcted myocardium. Such loops may prove useful in mapping tachycardias and in clarifying details about cardiac activation processes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cardiac mapping with irreverence to time: Replacing isochrones with omnipolar vectors;Heart Rhythm;2022-11

2. High-resolution, live, directional mapping;Heart Rhythm;2020-09

3. Challenges Associated with Interpreting Mechanisms of AF;Arrhythmia & Electrophysiology Review;2020-02-11

4. Reinserting Physiology into Cardiac Mapping Using Omnipolar Electrograms;Cardiac Electrophysiology Clinics;2019-09

5. Fundamentals of Intracardiac Mapping;Catheter Ablation of Cardiac Arrhythmias;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3