The Dickinson W. Richards lecture. New concepts in assessing cardiovascular function.

Author:

Wasserman K1

Affiliation:

1. Department of Medicine, Harbor-UCLA Medical Center, Torrance 90509.

Abstract

The primary role of the heart is to provide energy for the circulatory transport of oxygen (O2) to cells at rates commensurate with their metabolic activity. At rest, even a "sick" heart may be capable of transporting O2 adequately. But during exercise, the increase in O2 required by muscle cells demands that their blood flow be increased. The supply of O2 needed to meet the O2 requirement for muscle mitochondrial high-energy phosphate generation during exercise is a critical function of the circulation. Thus, the adequacy of cardiovascular function can be estimated, noninvasively, from the pattern of O2 uptake in response to an exercise stimulus. While arterial O2 tension (PaO2) is dependent on pulmonary function (except for intracardiac right-to-left shunt), the mass transfer of O2 (VO2) between the cells and lungs depends on pulmonary blood flow (i.e., cardiac output) and O2 concentration difference between the pulmonary arterial and pulmonary venous blood, C(a-v)O2 (Fick principle). Thus, VO2 in the first 15 seconds of exercise can be used to describe the initial increase in pulmonary blood flow and stroke volume, while the subsequent rise in VO2 results from the further increase in VO2 in response to work rate increase are used to detect circulatory disturbances. Also, the rate of CO2 output (VCO2) has been valuable in the assessment of cardiovascular function when related to VO2. Inadequate O2 availability results in anaerobic metabolism, causing increased muscle lactic acid production. At the pH of cell water, most of the hydrogen ions produced with lactate are buffered by bicarbonate. The CO2 generated by the buffering reaction (22 ml for each milliequivalent) causes a net increase in VCO2 relative to VO2 at the work rate at which buffering begins. This provides a useful estimate of the anaerobic threshold. Thus, study of the dynamic coupling of external to cellular respiration during a work rate stimulus provides valuable, direct, and noninvasive information about cardiovascular mechanisms in health and disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference28 articles.

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3