Clinical pharmacology of platelet cyclooxygenase inhibition.

Author:

Patrono C,Ciabattoni G,Patrignani P,Pugliese F,Filabozzi P,Catella F,Davì G,Forni L

Abstract

Nonsteroidal anti-inflammatory drugs and sulfinpyrazone compete dose-dependently with arachidonate for binding to platelet cyclooxygenase. Such a process closely follows systemic plasma drug concentrations and is reversible as a function of drug elimination. Peak inhibition and extent of its reversibility at 24 hr varies consistently with individual pharmacokinetic profile. Inhibition of platelet cyclooxygenase activity by these agents is associated with variable effects on prostaglandin (PG) synthesis in the gastric mucosa and the kidney. Aspirin acetylates platelet cyclooxygenase and permanently inhibits thromboxane (TX) A2 production in a dose-dependent fashion when single doses of 0.1 to 2.0 mg/kg are given. Acetylation of the enzyme by low-dose aspirin is cumulative on repeated dosing. The fractional dose of aspirin necessary to achieve a given level of acetylation by virtue of cumulative effects approximately equals the fractional daily platelet turnover. Serum TXB2 measurements obtained during long-term dosing with 0.11, 0.22, and 0.44 mg/kg aspirin in four healthy subjects could be fitted by a theoretical model assuming identical acetylation of platelet (irreversible) and megakaryocyte (reversible) cyclooxygenase. For a given dose within this range, both the rate at which cumulative acetylation occurs and its maximal extent largely depend upon the rate of platelet turnover. Continuous administration of low-dose aspirin (20 to 40 mg/day) has no statistically significant effect on urinary excretion of either 6-keto-PGF1 alpha or 2,3-dinor-6-keto-PGF1 alpha, i.e., indexes of renal and extrarenal PGI2 biosynthesis in vivo. Whether a selective sparing of extraplatelet cyclooxygenase activity by low-dose aspirin will result in increased antithrombotic efficacy, fewer toxic reactions, or both remains to be established in prospective clinical trials.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3