Frequency- and orientation-dependent effects of mexiletine and quinidine on conduction in the intact dog heart.

Author:

Bajaj A K,Kopelman H A,Wikswo J P,Cassidy F,Woosley R L,Roden D M

Abstract

Myocardial conduction depends on the magnitude of the fast inward sodium current as well as on cardiac fiber orientation, with more rapid propagation along myocardial fibers than across them. Although antiarrhythmic drugs depress the sodium current in a frequency-dependent fashion in vitro, their effects on conduction in the intact ventricle have been less well studied. We therefore evaluated the frequency- and orientation-dependent actions of mexiletine, quinidine, and their combination on epicardial conduction in 24 pentobarbital-anesthetized dogs. These interventions were chosen because the time constant of recovery from sodium-channel blockade by mexiletine in vitro is shorter than that from blockade by quinidine, and because we have previously shown that the combination of these drugs is often clinically effective when single-agent therapy fails. An electrode array that permitted measurement of conduction times in multiple orientations over short segments of epicardium without contamination by rapid Purkinje fiber propagation or by latency or virtual cathode effects at the stimulus site was developed for these studies. In all animals, the atrioventricular node was destroyed by injection of formalin to permit measurements over a wide range of cycle lengths (250 to 1500 msec). In the absence of drugs, conduction in any direction was frequency independent. In the presence of mexiletine, however, frequency-dependent increases in conduction times were found at cycle lengths of 600 msec or less; these changes were significantly greater in orientations for which baseline conduction was rapid. Quinidine, on the other hand, increased conduction times at all tested cycle lengths without significant orientation-dependent effects.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3