Experimental validation of Doppler echocardiographic measurement of volume flow through the stenotic aortic valve.

Author:

Otto C M1,Pearlman A S1,Gardner C L1,Enomoto D M1,Togo T1,Tsuboi H1,Ivey T D1

Affiliation:

1. Department of Medicine, University of Washington, Seattle 98195.

Abstract

In aortic stenosis, evaluation of aortic valve area by the continuity equation assumes that the volume of flow through the stenotic valve can be measured accurately in the left ventricular outflow tract. To test the accuracy of Doppler volume-flow measurement proximal to a stenotic valve, we developed an open-chest canine model in which the native leaflets were sutured together to create variable degrees of acute aortic stenosis. Left ventricular and aortic pressures were measured with micromanometer-tipped catheters. Volume flow was controlled and varied by directing systemic venous return through a calibrated roller pump and back to the right atrium. Because transaortic volume flow will not equal roller pump output when there is coexisting aortic insufficiency (present in 67% of studies), transaortic flow was measured by electromagnetic flowmeter with the flow probe placed around the proximal descending thoracic aorta, just beyond the ligated arch vessels. In 12 adult, mongrel dogs (mean weight, 25 kg), the mean transaortic pressure gradient ranged from 2 to 74 mm Hg, and transaortic volume flow ranged from 0.9 to 3.2 l/min. In four dogs, electromagnetic flow that was measured distal to the valve was accurate compared with volume flow determined by timed collection of total aortic flow into a graduated cylinder (n = 24, r = 0.97, electromagnetic flow = 0.87 Direct +0.13 l/min). In eight subsequent dogs, electromagnetic flow was compared with transaortic cardiac output measured by Doppler echocardiography in the left ventricular outflow tract as circular cross-sectional area [pi(D/2)2] x left ventricular outflow tract velocity-time integral x heart rate.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3