Determination of stroke volume and cardiac output during exercise: comparison of two-dimensional and Doppler echocardiography, Fick oximetry, and thermodilution.

Author:

Christie J,Sheldahl L M,Tristani F E,Sagar K B,Ptacin M J,Wann S

Abstract

Simultaneous estimates of cardiac output were made during graded upright maximal exercise in 10 male subjects by means of Doppler velocity spectrum of ascending aortic flow, apical two-dimensional echocardiograms, thermodilution, and Fick oximetry. In 15 subjects, aortic annular and root diameters were measured during similar exercise from parasternal two-dimensional echocardiograms. The linear correlation between Doppler, two-dimensional echocardiography, and the invasive estimates ranged from r = .78 to r = .92. Both echocardiographic techniques were able to predict changes in invasive flow estimates with reasonable accuracy. Two-dimensional echocardiographic flow estimates underestimated invasive values by about 60%. The accuracy of Doppler flow estimates varied with the method of estimating aortic cross-sectional area. Greatest accuracy was obtained with areas calculated from diameters measured at the aortic value anulus with the leading edge-to-leading edge method of measurement. Correlation coefficients comparing Doppler and thermodilution flow estimates were generally higher (r = .75 to .96, mean .86) for individuals than for the group, but accuracy of the Doppler estimates in single subjects was quite variable. Aortic diameters did not increase from rest to moderate levels of upright exercise. A 3% to 5% increase in resting aortic diameter was noted in the upright posture as compared with the supine. Doppler flow estimates were obtained in all subjects to maximal exertion but in only a minority of subjects with two-dimensional echocardiography or thermodilution. Thus two-dimensional and Doppler echocardiography offer a noninvasive means of estimating cardiac output during vigorous exercise. The Doppler technique is technically more suitable to the study of exercise than two-dimensional echocardiography.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3