Attenuation of Hypoxic Pulmonary Vasoconstriction by Endotoxemia Requires 5-Lipoxygenase in Mice

Author:

Ichinose Fumito1,Zapol Warren M.1,Sapirstein Adam1,Ullrich Roman1,Tager Andrew M.1,Coggins Kenneth1,Jones Rosemary1,Bloch Kenneth D.1

Affiliation:

1. From the Department of Anesthesia and Critical Care (F.I., W.M.Z., A.S., R.U., R.J.), the Cardiovascular Research Center (F.I., K.D.B.), and the Center for Immunology and Inflammatory Diseases (A.M.T.), Massachusetts General Hospital, Harvard Medical School, Boston, Mass, and Division of Pulmonary and Critical Care Medicine (K.C.), University of North Carolina, Chapel Hill, NC.

Abstract

Abstract —Sepsis and endotoxemia impair hypoxic pulmonary vasoconstriction (HPV), thereby reducing systemic oxygenation. To assess the role of leukotrienes (LTs) in the attenuation of HPV during endotoxemia, the increase in left lung pulmonary vascular resistance (LPVR) before and during left mainstem bronchus occlusion (LMBO) was measured in mice with and without a deletion of the gene encoding 5-lipoxygenase (5-LO). LMBO increased the LPVR equally in saline-challenged wild-type and 5-LO–deficient mice (96±20% and 94±19%, respectively). Twenty-two hours after challenge with Escherichia coli endotoxin, the ability of LMBO to increase LPVR was markedly impaired in wild-type mice (27±7%; P <0.05) but not in 5-LO–deficient mice (72±9%) or in wild-type mice pretreated with MK886, an inhibitor of 5-LO activity (76±10%). Compared with wild-type mice, endotoxin-induced disruption of lung structures and inflammatory cell influx in the lung were markedly attenuated in 5-LO–deficient mice. Administration of MK571, a selective cysteinyl LT 1 receptor antagonist, 1 hour before endotoxin challenge preserved HPV and attenuated pulmonary injury in wild-type mice but did not prevent the endotoxin-induced increase in pulmonary myeloperoxidase activity. Taken together, these findings demonstrate that a 5-LO product, most likely a cysteinyl LT, contributes to the attenuation of HPV and to pulmonary injury after challenge with endotoxin.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3