Statins Enhance Migratory Capacity by Upregulation of the Telomere Repeat-Binding Factor TRF2 in Endothelial Progenitor Cells

Author:

Spyridopoulos Ioakim1,Haendeler Judith1,Urbich Carmen1,Brummendorf Tim H.1,Oh Hidemasa1,Schneider Michael D.1,Zeiher Andreas M.1,Dimmeler Stefanie1

Affiliation:

1. From Molecular Cardiology, Department of Internal Medicine IV, University of Frankfurt, Frankfurt, Germany (I.S., J.H., C.U., A.M.Z., S.D.); the Department of Hematology, University of Tübingen, Tübingen, Germany (T.H.B.); and the Center for Cardiovascular Development, Baylor College of Medicine, Houston, Tex (H.O., M.D.S.).

Abstract

Background— Cultivation of endothelial progenitor cells (EPCs) leads to premature replicative senescence, limiting ex vivo expansion for potential clinical cell therapy. Recent studies have linked senescence to the dysfunction of telomeres, the “ends” of chromosomes, via the so-called mitotic clock or culture-induced stress. The purpose of this study was to elucidate a possible role of telomere biology in the functional augmentation of EPCs by statins. Methods and Results— Human EPCs were isolated from peripheral blood. Using flow cytometry after fluorescence in situ hybridization with a telomere-specific (C 3 TA 2 ) 3 peptide nucleic acid probe (Flow-FISH), we found mean telomere length in untreated EPCs from healthy subjects to range between 8.5±0.2 and 11.1±0.5 kb with no change over 6 days of culture, excluding telomere erosion as one cause for premature senescence. Although mean telomere length did not differ between statin-treated and untreated EPCs, atorvastatin (0.1 μmol/L) and mevastatin (1.0 μmol/L) both led to a more than 3-fold increase in the expression of the telomere capping protein TRF2 (telomere repeat-binding factor), as shown by immunoblotting, whereas quantitative reverse transcription–polymerase chain reaction demonstrated no increase in TRF2 mRNA. Telomere dysfunction of EPCs was also paralleled by a 4-fold increase in the DNA damage checkpoint-kinase 2 (Chk2). Conversely, statin cotreatment or overexpression of TRF2 completely suppressed Chk2 induction. Finally, overexpression of a dominant negative mutant of the TRF2 protein abrogated statin-induced enhancement of migratory activity down to baseline values. Conclusions— Ex vivo culturing of EPCs leads to “uncapping” of telomeres, indicated by the loss of TRF2. Statin cotreatment of EPCs prevents impairment of their functional capacity by a TRF2-dependent, posttranscriptional mechanism. This is the first time a beneficial effect of statins on telomere biology has been described.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3