Inflammation and Endothelial Function

Author:

Clapp Brian R.1,Hirschfield Gideon M.1,Storry Clare1,Gallimore J. Ruth1,Stidwill Ray P.1,Singer Mervyn1,Deanfield John E.1,MacAllister Raymond J.1,Pepys Mark B.1,Vallance Patrick1,Hingorani Aroon D.1

Affiliation:

1. From the Centre for Clinical Pharmacology and Therapeutics, BHF Laboratories (B.R.C., R.J.M., P.V., A.D.H.); Centre for Amyloidosis and Acute Phase Proteins, Royal Free Campus (G.M.H., J.R.G., M.B.P.); Vascular Physiology Unit, Institute of Child Health (C.S., J.E.D.); and Bloomsbury Institute for Intensive Care Medicine (R.P.S., M.S.), Department of Medicine, University College London; all in London, United Kingdom.

Abstract

Background— Circulating concentrations of the sensitive inflammatory marker C-reactive protein (CRP) predict future cardiovascular events, and CRP is elevated during sepsis and inflammation, when vascular reactivity may be modulated. We therefore investigated the direct effect of CRP on vascular reactivity. Methods and Results— The effects of isolated, pure human CRP on vasoreactivity and protein expression were studied in vascular rings and cells in vitro, and effects on blood pressure were studied in rats in vivo. The temporal relationship between changes in CRP concentration and brachial flow-mediated dilation was also studied in humans after vaccination with Salmonella typhi capsular polysaccharide, a model of inflammatory endothelial dysfunction. In contrast to some previous reports, highly purified and well-characterized human CRP specifically induced hyporeactivity to phenylephrine in rings of human internal mammary artery and rat aorta that was mediated through physiological antagonism by nitric oxide (NO). CRP did not alter endothelial NO synthase protein expression but increased protein expression of GTP cyclohydrolase-1, the rate-limiting enzyme in the synthesis of tetrahydrobiopterin, the NO synthase cofactor. In the vaccine model of inflammatory endothelial dysfunction in humans, increased CRP concentration coincided with the resolution rather than the development of endothelial dysfunction, consistent with the vitro findings; however, administration of human CRP to rats had no effect on blood pressure. Conclusions— Pure human CRP has specific, direct effects on vascular function in vitro via increased NO production; however, further clarification of the effect, if any, of CRP on vascular reactivity in humans in vivo will require clinical studies using specific inhibitors of CRP.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3