Impaired Arteriogenic Response to Acute Hindlimb Ischemia in CD4-Knockout Mice

Author:

Stabile Eugenio1,Burnett Mary Susan1,Watkins Craig1,Kinnaird Timothy1,Bachis Alessia1,la Sala Andrea1,Miller Jonathan M.1,Shou Matie1,Epstein Stephen E.1,Fuchs Shmuel1

Affiliation:

1. From the Cardiovascular Research Institute, MedStar Research Institute, Washington Hospital Center, Washington, DC (E.S., M.S.B., C.W., T.K., J.M.M., M.S., S.E.E., S.F.); the Department of Neuroscience, Georgetown University, Washington, DC (A.B.); and the Mucosal Immunity Section, Laboratory of Clinical Investigation, NIAID, NIH, Bethesda, Md (A.l.S.).

Abstract

Background— T lymphocytes, components of the immune and inflammatory systems, are involved in such normal processes as wound healing and host defense against infection and in such pathological processes as tumor growth and atherosclerotic plaque development. Angiogenesis is a mechanism common to each. Because CD4+ T lymphocytes are active in regulating humoral and cellular responses of the immune system, we determined whether CD4+ cells contribute to collateral vessel development by using the mouse ischemic hindlimb model. Methods and Results— One week after ischemia, CD4 −/− mice showed reduced collateral flow induction, macrophage number, and vascular endothelial growth factor levels in the ischemic muscle compared with wild-type mice. There was also delayed recovery of hindlimb function and increased muscle atrophy/fibrosis. Spleen-derived purified CD4+ T cells infused into CD4 −/− mice selectively localized to the ischemic limb and significantly increased collateral flow as well as macrophage number and vascular endothelial growth factor levels in the ischemic muscle. Muscle function and damage also improved. Conclusions— These results indicate an important role of CD4+ cells in collateral development, as demonstrated by a 25% decrease in blood flow recovery after femoral artery ligation. Our data also suggest that CD4+ T cells control the arteriogenic response to acute hindlimb ischemia, at least in part, by recruiting macrophages to the site of active collateral artery formation, which in turn triggers the development of collaterals through the synthesis of arteriogenic cytokines.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3