Weight Loss–Associated Induction of Peroxisome Proliferator–Activated Receptor-α and Peroxisome Proliferator–Activated Receptor-γ Correlate With Reduced Atherosclerosis and Improved Cardiovascular Function in Obese Insulin-Resistant Mice

Author:

Verreth Wim1,De Keyzer Dieuwke1,Pelat Michel1,Verhamme Peter1,Ganame Javier1,Bielicki John K.1,Mertens Ann1,Quarck Rozenn1,Benhabilès Nora1,Marguerie Gérard1,Mackness Bharti1,Mackness Mike1,Ninio Ewa1,Herregods Marie-Christine1,Balligand Jean-Luc1,Holvoet Paul1

Affiliation:

1. From the Cardiovascular Research Unit of the Center for Experimental Surgery and Anesthesiology (W.V., D.D.K., P.V., A.M., R.Q., P.H.), Department of Cardiology (J.G., M.-C.H.), Katholieke Universiteit Leuven, and the Department of Medicine, Unit of Pharmacology and Therapeutics, Université Catholique de Louvain (M.P., J.-L.B.), Belgium; Lawrence Berkeley National Laboratory, Berkeley, Calif (J.K.B.); the University of Manchester, Department of Medicine, Manchester Royal Infirmary, Manchester, UK ...

Abstract

Background— Weight loss in obese insulin-resistant but not in insulin-sensitive persons reduces coronary heart disease risk. To what extent changes in gene expression are related to atherosclerosis and cardiovascular function is unknown. Methods and Results— We studied the effect of diet restriction–induced weight loss on gene expression in the adipose tissue, the heart, and the aortic arch and on atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia, and insulin resistance are associated with hypertension, impaired left ventricular function, and accelerated atherosclerosis in those mice. Compared with lean mice, peroxisome proliferator–activated receptors (PPAR)-α and PPAR-γ expression was downregulated in obese double-knockout mice. Diet restriction caused a 45% weight loss, an upregulation of PPAR-α and PPAR-γ, and a change in the expression of genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress, and inflammation, most of which are under the transcriptional control of these PPARs. Changes in gene expression were associated with increased insulin sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. PPAR-α and PPAR-γ expression was inversely related to plaque volume and to oxidized LDL content in the plaques. Conclusions— Induction of PPAR-α and PPAR-γ in adipose tissue, heart, and aortic arch is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight loss. Improved lipid metabolism and insulin signaling is associated with decreased tissue deposition of oxidized LDL that increases cardiovascular risk in persons with the metabolic syndrome.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3