Affiliation:
1. From the Departments of Internal Medicine IV, Division of Cardiology (S.F., S.D., S.B., A.M.Z.) and Cardiovascular Physiology (R.B., I.F.), Johann W. Goethe-University, Frankfurt am Main, Germany.
Abstract
Background—
Nitric oxide (NO)– and prostacyclin-independent vasodilatation in several vascular beds has been linked to the activation of cytochrome P450 (CYP) epoxygenases expressed in endothelial cells. However, these enzymes, which generate vasodilator epoxyeicosatrienoic acids, may also produce oxygen-derived free radicals, which attenuate the bioavailability of NO. Here, we studied the involvement of CYP 2C9 in modulating endothelium-dependent and -independent changes in forearm blood flow (FBF) in healthy volunteers and in patients with manifest coronary artery disease.
Methods and Results—
The effects of sulfaphenazole, a selective inhibitor of CYP 2C9, on endothelium-dependent (acetylcholine) and endothelium-independent (sodium nitroprusside, SNP) FBF responses were measured by venous occlusion plethysmography in 5 healthy subjects and in 16 patients with angiographically documented stable coronary artery disease. Sulfaphenazole did not modify FBF responses to acetylcholine or SNP in healthy subjects. In contrast, sulfaphenazole markedly and dose-dependently enhanced the FBF response to acetylcholine without affecting the response to SNP. Vitamin C also increased the FBF response to acetylcholine, but this effect was further potentiated by sulfaphenazole. In the presence of
N
ω
-monomethyl-
l
-arginine, sulfaphenazole failed to significantly improve acetylcholine-induced vasodilatation. The oxidation of serum proteins was enhanced in patients with coronary artery disease, and this effect was significantly attenuated by sulfaphenazole.
Conclusions—
The CYP 2C9 inhibitor sulfaphenazole enhances endothelium-dependent vasodilator responses in patients with manifest coronary artery disease. This effect seems to be related to an increase in the bioavailability of NO, probably as a consequence of an attenuated generation of reactive oxygen species by CYP 2C9 in endothelial cells.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献