Protective Role of Angiopoietin-1 in Endotoxic Shock

Author:

Witzenbichler Bernhard1,Westermann Dirk1,Knueppel Sabine1,Schultheiss Heinz-Peter1,Tschope Carsten1

Affiliation:

1. From the Department of Cardiology and Pneumology, Universitätsmedizin Berlin, Charité Campus Benjamin Franklin, Berlin, Germany.

Abstract

Background— Angiopoietin-1 (Ang1) plays an essential role in embryonic vasculature development, protects the adult peripheral vasculature from leakage, and has antiinflammatory properties. Because endotoxin-induced shock is a condition with microvascular leakage resulting from inflammation, we examined the potential therapeutic benefit of Ang1 in a murine model of lipopolysaccharide (LPS)-induced endotoxic shock. Methods and Results— To induce endotoxic shock, LPS was injected intraperitoneally into C57BL/6 mice. Half of the mice received an intravenous application of 1.0×10 9 plaque-forming units of an adenoviral construct expressing human Ang1 (AdhAng1); in the other half an identical vector expressing green fluorescent protein (AdGFP) was injected as a control. In the AdhAng1-treated mice, hepatic transfection and high expression of circulating Ang1 protein were observed. Whereas in LPS-treated control mice, hemodynamic function was severely depressed 12 hours after LPS injection (decrease of blood pressure from 91±3 to 49±7 mm Hg, d P /d t max from 7284±550 to 2699±233 mm Hg/s, cardiac output from 11.3±1.2 to 2.8±0.8 mL/min; P <0.0005), in LPS-treated AdhAng1 mice blood pressure fell only to 76±3 mm Hg, d P /d t max to 5091±489 mm Hg/s, and cardiac output to 6.7±1.4 mL/min ( P <0.05). This resistance to LPS-induced hemodynamic changes was reflected by an improved Kaplan-Meier survival rate of the AdhAng1 mice. Histological analysis revealed that lung injury after LPS injection was markedly attenuated in AdhAng1 mice. In addition, LPS-induced increase in lung water content and pulmonary myeloperoxidase activity was significantly reduced. Furthermore, LPS-induced increases in the expression level of vascular cell adhesion molecule-1, intracellular adhesion molecule-1, and E-selectin protein in the lungs were markedly lower in AdhAng1 mice than in control mice. Finally, in the mice overexpressing Ang1, pulmonary endothelial NO synthase (eNOS) expression and activity remained preserved after LPS challenge, providing evidence that the beneficial effect of Ang1 in endotoxic shock is mediated by eNOS-derived NO. Conclusions— Our study demonstrates an improved mortality rate in mice with endotoxic shock pretreated with an adenoviral construct encoding Ang1. The enhanced survival rate induced by Ang1 was accompanied by an improvement in hemodynamic function, reduced lung injury, a lower expression of inflammatory adhesion molecules, and preserved eNOS activity in the lung tissue. Ang1 may therefore have utility as an adjunctive agent for the treatment of septic shock condition.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3