Liposomal Alendronate Inhibits Systemic Innate Immunity and Reduces In-Stent Neointimal Hyperplasia in Rabbits

Author:

Danenberg Haim D.1,Golomb Gershon1,Groothuis Adam1,Gao Jianchuan1,Epstein Hila1,Swaminathan Rajesh V.1,Seifert Philip1,Edelman Elazer R.1

Affiliation:

1. From the Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Mass (H.D.D., A.G., R.V.S., P.S., E.R.E.); and the Department of Cardiology, Hadassah University Hospital (H.D.D.), and School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem (G.G., J.G., H.E.), Jerusalem, Israel.

Abstract

Background— Innate immunity is of major importance in vascular repair. The present study evaluated whether systemic and transient depletion of monocytes and macrophages with liposome-encapsulated bisphosphonates inhibits experimental in-stent neointimal formation. Methods and Results— Rabbits fed on a hypercholesterolemic diet underwent bilateral iliac artery balloon denudation and stent deployment. Liposomal alendronate (3 or 6 mg/kg) was given concurrently with stenting. Monocyte counts were reduced by >90% 24 to 48 hours after a single injection of liposomal alendronate, returning to basal levels at 6 days. This treatment significantly reduced intimal area at 28 days, from 3.88±0.93 to 2.08±0.58 and 2.16±0.62 mm 2 . Lumen area was increased from 2.87±0.44 to 3.57±0.65 and 3.45±0.58 mm 2 , and arterial stenosis was reduced from 58±11% to 37±8% and 38±7% in controls, rabbits treated with 3 mg/kg, and rabbits treated with 6 mg/kg, respectively (mean±SD, n=8 rabbits/group, P <0.01 for all 3 parameters). No drug-related adverse effects were observed. Reduction in neointimal formation was associated with reduced arterial macrophage infiltration and proliferation at 6 days and with an equal reduction in intimal macrophage and smooth muscle cell content at 28 days after injury. Conversely, drug regimens ineffective in reducing monocyte levels did not inhibit neointimal formation. Conclusions— Systemic transient depletion of monocytes and macrophages, by a single liposomal bisphosphonates injection concurrent with injury, reduces in-stent neointimal formation and arterial stenosis in hypercholesterolemic rabbits.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3