Targeted Antiproliferative Drug Delivery to Vascular Smooth Muscle Cells With a Magnetic Resonance Imaging Nanoparticle Contrast Agent

Author:

Lanza Gregory M.1,Yu Xin1,Winter Patrick M.1,Abendschein Dana R.1,Karukstis Kerry K.1,Scott Michael J.1,Chinen Lori K.1,Fuhrhop Ralph W.1,Scherrer David E.1,Wickline Samuel A.1

Affiliation:

1. From the Department of Medicine, Division of Cardiology, Washington University Medical School, St Louis, Mo (G.M.L., X.Y., P.M.W., D.R.A., M.J.S., L.K.C., R.W.F., D.E.S., S.A.W.), and the Department of Chemistry, Harvey Mudd College, Claremont, Calif (K.K.K.).

Abstract

Background— Restenosis is a serious complication of coronary angioplasty that involves the proliferation and migration of vascular smooth muscle cells (VSMCs) from the media to the intima, synthesis of extracellular matrix, and remodeling. We have previously demonstrated that tissue factor–targeted nanoparticles can penetrate and bind stretch-activated vascular smooth muscles in the media after balloon injury. In the present study, the concept of VSMC-targeted nanoparticles as a drug-delivery platform for the prevention of restenosis after angioplasty is studied. Methods and Results— Tissue factor–targeted nanoparticles containing doxorubicin or paclitaxel at 0, 0.2, or 2.0 mole% of the outer lipid layer were targeted for 30 minutes to VSMCs and significantly inhibited their proliferation in culture over the next 3 days. Targeting of the nanoparticles to VSMC surface epitopes significantly increased nanoparticle antiproliferative effectiveness, particularly for paclitaxel. In vitro dissolution studies revealed that nanoparticle drug release persisted over one week. Targeted antiproliferative results were dependent on the hydrophobic nature of the drug and noncovalent interactions with other surfactant components. Molecular imaging of nanoparticles adherent to the VSMC was demonstrated with high-resolution T 1 -weighted MRI at 4.7T. MRI 19 F spectroscopy of the nanoparticle core provided a quantifiable approach for noninvasive dosimetry of targeted drug payloads. Conclusions— These data suggest that targeted paramagnetic nanoparticles may provide a novel, MRI-visualizable, and quantifiable drug delivery system for the prevention of restenosis after angioplasty.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 253 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3