Correlation Between Anatomy and Electrical Activation in Canine Pulmonary Veins

Author:

Hamabe Akira1,Okuyama Yuji1,Miyauchi Yasushi1,Zhou Shengmei1,Pak Hui-Nam1,Karagueuzian Hrayr S.1,Fishbein Michael C.1,Chen Peng-Sheng1

Affiliation:

1. From the Division of Cardiology, Department of Medicine, Cedars-Sinai Medical Center, and the Department of Pathology and Laboratory Medicine at the David Geffen School of Medicine, UCLA (M.C.F), Los Angeles, Calif.

Abstract

Background— The roles of complex muscle sleeve geometry and fiber orientation in the pulmonary veins (PVs) in wave-front propagation are poorly understood. Methods and Results— We mapped the left superior PV (LSPV, n=7) and left inferior PV (LIPV, n=4) of dogs with 420 bipolar electrodes (1-mm resolution) and performed detailed histological examination. In the anterior LSPV–left atrial (LA) junction, myocardial muscle fibers were oriented perpendicular to PV blood flow. A wedge filled with connective tissues led to a complete muscle separation or an abrupt increase in muscle thickness between the PV and LA (0.42±0.12 versus 2.0±0.31 mm, P <0.01). Distal LSPV pacing resulted in conduction block at the anterior PV-LA junction, with double potentials. In contrast, the posterior LSPV-LA junction showed gradual muscle thickening and a fiber orientation parallel to the blood flow. The maximum PV muscle thickness in the anterior PV-LA junction is thinner than that in the posterior junction (0.83±0.15 versus 1.3±0.38 mm, P <0.01). Distal LIPV pacing showed multiple PV-LA breakthroughs, with segmental conduction block in the anterior PV-LA junction. The conduction block corresponded to segmental PV-LA muscle disconnection. Complex fiber orientations in the PV muscle sleeves away from the PV-LA junction were responsible for intra-PV conduction delay or block during rapid PV pacing. Conclusions— We conclude that segmental muscle disconnection and differential muscle narrowing at PV-LA junctions and complex fiber orientations within the PV provide robust anatomical bases for conduction disturbance at the PV-LA junction and complex intra-PV conduction patterns.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3