Possible Protective Role for C-Reactive Protein in Atherogenesis

Author:

Bhakdi Sucharit1,Torzewski Michael1,Paprotka Kerstin1,Schmitt Steffen1,Barsoom Hala1,Suriyaphol Prapat1,Han Shan-Rui1,Lackner Karl J.1,Husmann Matthias1

Affiliation:

1. From the Institute of Medical Microbiology and Hygiene (S.B., K.P., H.B., P.S., S.H., M.H.), Institute for Clinical Chemistry and Laboratory Medicine (M.T., K.J.L.), and Center for Natural Sciences and Medicine (S.S.), Johannes Gutenberg University Mainz, Mainz, Germany.

Abstract

Background— Previous work indicated that enzymatically remodeled LDL (E-LDL) might activate complement in atherosclerotic lesions via a C-reactive protein (CRP)–dependent and CRP-independent pathway. We sought to substantiate this contention and determine whether both pathways drive the sequence to completion. Methods and Results— E-LDL was prepared by sequential treatment of LDL with a protease and cholesteryl esterase. Trypsin, proteinase K, cathepsin H, or plasmin was used with similar results. Functional tests were used to assess total complement hemolytic activity, and immunoassays were used to demonstrate C3 cleavage and to quantify C3a, C4a, C5a, and C5b-9. E-LDL preparations activated complement to completion, independent of CRP, when present above a threshold concentration (100 to 200 μg/mL in 5% serum). Below the threshold, all E-LDL preparations activated complement in dependence of CRP, but the pathway then halted before the terminal sequence. Native LDL and oxidized LDL did not activate complement under any circumstances tested. Immunohistological analyses corroborated the concept that CRP-dependent complement activation inefficiently generates C5b-9. Conclusions— Binding of CRP to E-LDL is the first trigger for complement activation in the atherosclerotic lesion, but the terminal sequence is thereby spared. This putatively protective function of CRP is overrun at higher E-LDL concentrations, so that potentially harmful C5b-9 complexes are generated.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3