Autonomic Neural Control of Dynamic Cerebral Autoregulation in Humans

Author:

Zhang Rong1,Zuckerman Julie H.1,Iwasaki Kenichi1,Wilson Thad E.1,Crandall Craig G.1,Levine Benjamin D.1

Affiliation:

1. From the Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, and the University of Texas Southwestern Medical Center at Dallas, Tex.

Abstract

Background— The purpose of the present study was to determine the role of autonomic neural control of dynamic cerebral autoregulation in humans. Methods and Results— We measured arterial pressure and cerebral blood flow (CBF) velocity in 12 healthy subjects (aged 29±6 years) before and after ganglion blockade with trimethaphan. CBF velocity was measured in the middle cerebral artery using transcranial Doppler. The magnitude of spontaneous changes in mean blood pressure and CBF velocity were quantified by spectral analysis. The transfer function gain, phase, and coherence between these variables were estimated to quantify dynamic cerebral autoregulation. After ganglion blockade, systolic and pulse pressure decreased significantly by 13% and 26%, respectively. CBF velocity decreased by 6% ( P <0.05). In the very low frequency range (0.02 to 0.07 Hz), mean blood pressure variability decreased significantly (by 82%), while CBF velocity variability persisted. Thus, transfer function gain increased by 81%. In addition, the phase lead of CBF velocity to arterial pressure diminished. These changes in transfer function gain and phase persisted despite restoration of arterial pressure by infusion of phenylephrine and normalization of mean blood pressure variability by oscillatory lower body negative pressure. Conclusions— These data suggest that dynamic cerebral autoregulation is altered by ganglion blockade. We speculate that autonomic neural control of the cerebral circulation is tonically active and likely plays a significant role in the regulation of beat-to-beat CBF in humans.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference39 articles.

1. Edvinsson L MacKenzie ET Mccuulloch J. Cerebral Blood Flow and Metabolism. New York: Raven Press; 1993.

2. Neuronal messengers in the human cerebral circulation

3. Interaction between Cerebrovascular Sympathetic, Parasympathetic and Sensory Nerves in Blood Flow Regulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3