Insulin-Dependent Activation of Endothelial Nitric Oxide Synthase Is Impaired by O-Linked Glycosylation Modification of Signaling Proteins in Human Coronary Endothelial Cells

Author:

Federici Massimo1,Menghini Rossella1,Mauriello Alessandro1,Hribal Marta Letizia1,Ferrelli Francesca1,Lauro Davide1,Sbraccia Paolo1,Spagnoli Luigi Giusto1,Sesti Giorgio1,Lauro Renato1

Affiliation:

1. From Department of Internal Medicine (M.F., R.M., F.F., D.L., P.S., R.L.) and Department of Biopathology (A.M., L.G.S.), University of Tor Vergata, Rome, Italy; Department of Medicine (M.L.H.), College of Physicians and Surgeons of Columbia University, New York, NY; and Department of Clinical and Experimental Medicine (G.S.), University of Catanzaro, Catanzaro, Italy.

Abstract

Background Hyperglycemia impairs functional properties of cytosolic and nuclear proteins via O-linked glycosylation modification (O-GlcNAcylation). We studied the effects of O-GlcNAcylation on insulin signaling in human coronary artery endothelial cells. Methods and Results O-GlcNAcylation impaired the metabolic branch of insulin signaling, ie, insulin receptor (IR) activation of the IR substrate (IRS)/phosphatidylinositol 3-kinase (PI3-K)/Akt, whereas it enhanced the mitogenic branch, ie, ERK-1/2 and p38 (mitogen-activated protein kinase). Both in vivo and in vitro phosphorylation of endothelial nitric oxide synthase (eNOS) by Akt were reduced by hyperglycemia and hexosamine activation. Insulin-induced eNOS activity in vivo was reduced by hyperglycemia and hexosamine activation, which was coupled to increased activation and expression of matrix metalloproteinase-2 and -9; these phenomena were reversed by inhibition of the hexosamine pathway. Finally, carotid plaques from type 2 diabetic patients showed increased endothelial O-GlcNAcylation with respect to nondiabetics. Conclusions Our data show that hyperglycemia, through the hexosamine pathway, impairs activation of the IR/IRS/PI3-K/Akt pathway, resulting in deregulation of eNOS activity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 307 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3