Genetically Reduced Antioxidative Protection and Increased Ischemic Heart Disease Risk

Author:

Juul Klaus1,Tybjærg-Hansen Anne1,Marklund Stefan1,Heegaard Niels H.H.1,Steffensen Rolf1,Sillesen Henrik1,Jensen Gorm1,Nordestgaard Børge G.1

Affiliation:

1. From the Department of Clinical Biochemistry, Herlev University Hospital, Herlev, Denmark (K.J., B.G.N.); the Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (A.T.-H.); the Department of Clinical Chemistry, Umeå University Hospital, Umeå, Sweden (S.M.); the Department of Autoimmunity, Statens Serum Institute, Copenhagen, Denmark (N.H.H.H.); the Department of Cardiology, Hillerød Hospital, Hillerød, Denmark (R.S.); the Department of Vascular...

Abstract

Background— Extracellular superoxide dismutase (EC-SOD) is an antioxidative enzyme found in high concentrations in the arterial wall. Two to three percent of all people in Denmark carry an R213G substitution, which increases plasma concentration 10-fold. This may reduce arterial wall EC-SOD concentrations, increase intimal LDL oxidation, and therefore may accelerate atherogenesis. Our primary hypothesis was that EC-SOD-R213G predisposes to ischemic heart disease (IHD). The secondary hypothesis was that EC-SOD-R213G offers predictive ability with respect to IHD beyond that offered by measurements of plasma EC-SOD and autoantibodies against oxidized LDL (oxLDL). Methods and Results— The primary hypothesis was tested in a prospective, population-based study of 9188 participants from The Copenhagen City Heart Study with 956 incident IHD events during 23 years of follow-up and retested cross-sectionally with independent case populations of patients with IHD (n=943) or ischemic cerebrovascular disease (ICVD) (n=617). Case populations were compared with unmatched IHD/ICVD-free control subjects from The Copenhagen City Heart Study (n=7992). The secondary hypothesis was tested by using a nested case-control study comparing patients with IHD (n=956) with age- and gender-matched control subjects (n=956). Age- and gender-adjusted relative risk for IHD in heterozygotes (n=221, 2.4%) versus noncarriers (n=8965, 97.6%) was 1.5 (95% CI, 1.1 to 2.1). Retesting confirmed this: Age- and gender-adjusted odds ratios for IHD was 1.4 (1.0 to 2.0) and for ICVD 1.7 (1.1 to 2.7). Additional adjustment for plasma EC-SOD produced an odds ratio for IHD in heterozygotes versus noncarriers of 9.2 (1.2 to 72), whereas adjustment for autoantibodies against oxLDL produced an odds ratio of 2.5 (1.2 to 5.3). Conclusions— Heterozygosity for EC-SOD-R213G is associated with increased IHD risk. Genotyping offers predictive ability with respect to IHD beyond that offered by plasma EC-SOD and autoantibodies against oxLDL.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3