Stimulation of Id1 Expression by Bone Morphogenetic Protein Is Sufficient and Necessary for Bone Morphogenetic Protein–Induced Activation of Endothelial Cells

Author:

Valdimarsdottir Gudrun1,Goumans Marie-José1,Rosendahl Alexander1,Brugman Martijn1,Itoh Susumu1,Lebrin Franck1,Sideras Paschalis1,ten Dijke Peter1

Affiliation:

1. From the Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, the Netherlands (G.V., M.-J.G., M.B., S.I., F.L. P.t.D.), and the Department of Immunology, Biomedical Center Lund University, Lund, Sweden (A.R., P.S.).

Abstract

Background— Bone morphogenetic proteins (BMPs) are multifunctional proteins that regulate the proliferation, differentiation, and migration of a large variety of cell types. Like other members of the transforming growth factor-β family, BMPs elicit their cellular effects through activating specific combinations of type I and type II serine/threonine kinase receptors and their downstream effector proteins, which are termed Smads. In the present study, we investigated BMP receptor/Smad expression and signaling in endothelial cells (ECs) and examined the effects of BMP on EC behavior. Methods and Results— Immunohistochemical analysis of tissue sections of human colon and mouse heart and aorta showed that BMP receptors are expressed in ECs in vivo. Bovine aortic ECs and mouse embryonic ECs were found to express BMP receptors and their Smads. BMP receptor activation induced the phosphorylation of specific Smad proteins and promoted EC migration and tube formation. Id1 was identified as a BMP/Smad target in ECs. Ectopic expression of Id1 mimicked BMP-induced effects. Importantly, specific interference with Id1 expression blocked BMP-induced EC migration. Conclusions— The BMP/Smad pathway can potently activate the endothelium. Id1 expression is strongly induced by BMP in ECs. Ectopic expression of Id1 induces EC migration and tube formation. Moreover, Id1 played a critical role in mediating BMP-induced EC migration.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3