Resveratrol, a Polyphenolic Phytoalexin Present in Red Wine, Enhances Expression and Activity of Endothelial Nitric Oxide Synthase

Author:

Wallerath Thomas1,Deckert Göran1,Ternes Thomas1,Anderson Henrik1,Li Huige1,Witte Klaus1,Förstermann Ulrich1

Affiliation:

1. From the Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany (T.W., G.D., H.L., U.F.); ESWE-Institute for Water Research and Water Technology GmbH, Wiesbaden, Germany (T.T., H.A.); and the Institute of Pharmacology and Toxicology, Faculty of Clinical Medicine Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany (K.W.).

Abstract

Background— Estrogens can upregulate endothelial nitric oxide synthase (eNOS) in human endothelial cells by increasing eNOS promoter activity and enhancing the binding activity of the transcription factor Sp1. Resveratrol, a polyphenolic phytoalexin found in grapes and wine, has been reported to act as an agonist at the estrogen receptor. Therefore, we tested the effect of this putative phytoestrogen on eNOS expression in human endothelial cells. Methods and Results— Incubation of human umbilical vein endothelial cells (HUVEC) and HUVEC-derived EA.hy 926 cells with resveratrol for 24 to 72 hours upregulated eNOS mRNA expression in a time- and concentration-dependent manner (up to 2.8-fold). eNOS protein expression and eNOS-derived NO production were also increased after long-term incubation with resveratrol. Resveratrol increased the activity of the eNOS promoter (3.5-kb fragment) in a concentration-dependent fashion, with the essential trans-stimulated sequence being located in the proximal 263 bp of the promoter sequence. In addition, eNOS mRNA was stabilized by resveratrol. The effect of resveratrol on eNOS expression was not modified by the estrogen receptor antagonists ICI 182780 and RU 58668. In electrophoretic mobility shift assays, nuclear extracts from resveratrol-incubated EA.hy 926 cells showed no enhanced binding activity of the eNOS promoter-relevant transcription factors Sp1, GATA, PEA3, YY1, or Elf-1. In addition to its long-term effects on eNOS expression, resveratrol also enhanced the production of bioactive NO in the short-term (after a 2-minute incubation). Conclusions— In concert with other effects, the stimulation of eNOS expression and activity may contribute to the cardiovascular protective effects attributed to resveratrol.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3