Bosentan for the Prevention of Overcirculation-Induced Experimental Pulmonary Arterial Hypertension

Author:

Rondelet Benoît1,Kerbaul François1,Motte Sophie1,van Beneden Ronald1,Remmelink Myriam1,Brimioulle Serge1,McEntee Kathleen1,Wauthy Pierre1,Salmon Isabelle1,Ketelslegers Jean-Marie1,Naeije Robert1

Affiliation:

1. From the Laboratory of Physiology, Free University of Brussels (B.R., F.K., S.M., S.B., K.M., P.W., R.N.), Unit of Diabetes and Nutrition, Catholic University of Louvain (R.v.B., J.-M.K.), and Department of Pathology, Erasmus University Hospital (M.R., I.S.), Brussels, Belgium.

Abstract

Background— The dual endothelin-receptor antagonist bosentan has been reported to improve pulmonary arterial hypertension, but the role of endothelins in the pathogenesis of the condition remains uncertain. We investigated the roles of endothelin-1 (ET-1), nitric oxide (NO), vascular endothelial growth factor (VEGF), and tenascin in overcirculation-induced pulmonary hypertension in piglets, as a model of early pulmonary arterial hypertension, with or without bosentan therapy. Methods and Results— Thirty 3-week-old piglets were randomized to placebo or to bosentan 15 mg/kg BID after the anastomosis of the left subclavian artery to the pulmonary arterial trunk or after a sham operation. Three months later, the animals underwent a hemodynamic evaluation followed by cardiac and pulmonary tissue sampling for morphometry, immunohistochemistry, and real-time quantitative PCR. Chronic systemic-to-pulmonary shunting increased circulating plasma ET-1, pulmonary mRNA for ET-1, ET B receptor, inducible NO synthase, VEGF, and pulmonary ET-1 and VEGF proteins. There were increases in myocardial mRNA for ET A receptor and VEGF and in myocardial VEGF protein. Pulmonary and myocardial tissue mRNA for tenascin did not change. Normalized-flow pulmonary artery pressure increased from 20 (2) to 33 (1) mm Hg [mean (SEM)], arteriolar medial thickness increased on average by 83%, and these changes were completely prevented by bosentan therapy. Right ventricular end-systolic elastance increased in proportion to pulmonary arterial elastance with or without bosentan. Conclusions— Experimental overcirculation-induced pulmonary arterial hypertension appears to be causally related to an activation of the pulmonary ET-1 system and as such is completely prevented by the dual endothelin receptor antagonist bosentan.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3