Cardiovascular Control During Exercise

Author:

Dela Flemming1,Mohr Thomas1,Jensen Christina M.R.1,Haahr Hanne L.1,Secher Niels H.1,Biering-Sørensen Fin1,Kjær Michael1

Affiliation:

1. From the Department of Medical Physiology (F.D., C.M.R.J.), The Panum Institute; Copenhagen Muscle Research Center (F.D., N.H.S., M.K.); Department of Clinical Physiology/Nuclear Medicine (F.D.), Herlev Hospital; Department of Anesthesia (T.M., H.L.H., N.H.S.) and Center for Spinal Injury (F.B.-S.), Rigshospitalet; and Sports Medicine Research Unit (M.K.), Bispebjerg Hospital, University of Copenhagen, Denmark.

Abstract

Background— We studied the role of the central nervous system, neural feedback from contracting skeletal muscles, and sympathetic activity to the heart in the control of heart rate and blood pressure during 2 levels of dynamic exercise. Methods and Results— Spinal cord–injured individuals (SCI) with (paraplegia, n=4) or without (tetraplegia, n=6) sympathetic innervation to the heart performed electrically induced exercise. Responses were compared with those established by able-bodied individuals (control, n=6) performing voluntary exercise at a similar pulmonary oxygen uptake. In all subjects, cardiac output and leg blood flow increased, but in SCI they reached a maximal value. The increase in cardiac output was mainly elicited by an increase in stroke volume in individuals with tetraplegia, whereas in individuals with paraplegia it was by heart rate. The increase in SCI was slow compared with that in controls. During exercise, blood pressure was stable in controls, whereas it decreased over time in SCI and especially in individuals with tetraplegia. Conclusions— The autonomic nervous system provides for acceleration of the heart at the onset of exercise, but a slow increase in heart rate is established even without central command, neural feedback from working muscles, or autonomic influence on the heart. Yet an intact autonomic nervous system is a prerequisite for a large rise in cardiac output and in turn leg blood flow during exercise. Thus, when the sympathetic nervous system is injured at a level where it influences the heart, vasodilatation in working muscles challenges blood pressure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3