Endothelium-Restricted Overexpression of Human Endothelin-1 Causes Vascular Remodeling and Endothelial Dysfunction

Author:

Amiri Farhad1,Virdis Agostino1,Neves Mario Fritsch1,Iglarz Marc1,Seidah Nabil G.1,Touyz Rhian M.1,Reudelhuber Timothy L.1,Schiffrin Ernesto L.1

Affiliation:

1. From the Experimental Hypertension (F.A., A.V., M.F.N., M.I., R.M.T., E.L.S.) and Molecular Biochemistry of Hypertension (T.L.R.) Laboratories of the CIHR Multidisciplinary Research Group on Hypertension, and the Laboratory of Biochemical Neuroendocrinology (N.G.S.), Clinical Research Institute of Montreal, Montreal, Canada.

Abstract

Background— Endothelin (ET)-1 is a potent vasoconstrictor that contributes to vascular remodeling in hypertension and other cardiovascular diseases. Endogenous ET-1 is produced predominantly by vascular endothelial cells. To directly test the role of endothelium-derived ET-1 in cardiovascular pathophysiology, we specifically targeted expression of the human preproET-1 gene to the endothelium by using the Tie-2 promoter in C57BL/6 mice. Methods and Results— Ten-week-old male C57BL/6 transgenic (TG) and nontransgenic (wild type; WT) littermates were studied. TG mice exhibited 3-fold higher vascular tissue ET-1 mRNA and 7-fold higher ET-1 plasma levels than did WT mice but no significant elevation in blood pressure. Despite the absence of significant blood pressure elevation, TG mice exhibited marked hypertrophic remodeling and oxidant excess-dependent endothelial dysfunction of resistance vessels, altered ET-1 and ET-3 vascular responses, and significant increases in ET B expression compared with WT littermates. Moreover, TG mice generated significantly higher oxidative stress, possibly through increased activity and expression of vascular NAD(P)H oxidase than did their WT counterparts. Conclusions— In this new murine model of endothelium-restricted human preproET-1 overexpression, ET-1 caused structural remodeling and endothelial dysfunction of resistance vessels, consistent with a direct nonhemodynamic effect of ET-1 on the vasculature, at least in part through the activation of vascular NAD(P)H oxidase.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 282 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3